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Preface
This volume contains the proceedings of the Tenth International Workshop on
Graph Computation Models (GCM 20191). The workshop was held in Eind-
hoven, The Netherlands, on July 17th, 2019, as part of STAF 2019 (Software
Technologies: Applications and Foundations).

Graphs are common mathematical structures that are visual and intuitive.
They constitute a natural and seamless way for system modelling in science,
engineering and beyond, including computer science, biology, business process
modelling, etc. Graph computation models constitute a class of very high-level
models where graphs are first-class citizens. The aim of the International GCM
Workshop series is to bring together researchers interested in all aspects of
computation models based on graphs and graph transformation. It promotes
the cross-fertilizing exchange of ideas and experiences among senior and young
researchers from the different communities interested in the foundations, appli-
cations, and implementations of graph computation models and related areas.

Previous editions of GCM series were held in Natal, Brazil (GCM 2006),
in Leicester, UK (GCM 2008), in Enschede, The Netherlands (GCM 2010), in
Bremen, Germany (GCM 2012), in York, UK (GCM 2014), in L’Aquila, Italy
(GCM 2015), in Wien, Austria (GCM 2016), in Marburg, Germany (GCM 2017)
and in Toulouse, France (GCM 2018).

These proceedings contain seven accepted papers and an introduction to the
panel discussion dedicated to the Analysis of Graph Transformation Systems.
All submissions were subject to careful refereeing. The topics of accepted papers
range over a wide spectrum, including theoretical aspects of graph transforma-
tion, verification and parsing techniques as well as application issues of graph
computation models. Selected papers from these proceedings will be published
online by Electronic Proceedings in Theoretical Computer Science (EPTCS,
http://www.eptcs.org/).

We would like to thank all the people who contributed to the success of
GCM 2019, especially the Program Committee and the additional reviewers for
their valuable contributions to the selection process as well as the contributing
authors without whom this volume would not exist. We would like also to
express our gratitude to all members of the STAF 2019 Organizing Committee.

July, 2019 Rachid Echahed and Detlef Plump

Program chairs of GCM 2019

1GCM2019 web site: http://gcm2019.imag.fr
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Transformation of Turing Machines into
Context-Dependent Fusion Grammars

Aaron Lye

University of Bremen, Department of Computer Science and Mathematics
P.O.Box 33 04 40, 28334 Bremen, Germany

lye@math.uni-bremen.de

Abstract. Context-dependent fusion grammars were recently introduced
as devices for the generation of hypergraph languages. In this paper, we
show that this new type of hypergraph grammars, where the application
of fusion rules is restricted by positive and negative context conditions,
is a universal computation model. Our main result is that Turing ma-
chines can be transformed into these grammars such that the recognized
language of the Turing machine and the generated language of the cor-
responding context-dependent fusion grammar coincide up to represen-
tation of strings as graphs. As a corollary we get that context-dependent
fusion grammars can generate all recursive enumerable languages.

1 Introduction

In 2017 we introduced fusion grammars as generative devices on hypergraphs [1].
They are motivated by the observation, that one encounters various fusion pro-
cesses in various scientific fields like DNA computing, chemistry, tiling, fractal
geometry, visual modeling and others. The common principle is, that a few
small entities may be copied and fused to produce more complicated entities.
For example, the fusion of DNA double strands according to the Watson-Crick
complementarity is a key operation of DNA computing (see, e.g. [2,3]). Similar
effects can be seen in the iteration of some fractals (see, e.g., [4]), can be found
in mosaics and tilings (see, e.g., [5]), or in the area of visual modeling where
a spectrum of diagrams is composed of some basic forms. However, it seems
that the generative power of fusion grammars is limited (cf. [1,6]) and that they
are insufficient whenever context, regulation or regularity is required. There are
numberous examples of fusion processes restricted to certain conditions, e.g. the
presence enzymes accelerating chemical reactions. In [7] we introduced context-
dependent fusion grammars as a generalization of fusion grammars. The basic
entities are provided by the start hypergraph. The fusion is done by means
of context-dependent fusion rules. A context-dependent fusion rule consumes
two complementary hyperedges and identifies the attachment vertices provided
that certain positive and negative context conditions are satisfied. It turns out,
that context-dependent fusion grammars are powerful enough to simulate Tur-
ing machines. We construct a transformation of Turing machines into context-
dependent fusion grammars in such a way that the recognized language of the
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Turing machine and the language generated by the corresponding grammar co-
incide up to representation of strings as graphs.1 The key of the transformation
is to simulate a step of the Turing machine by a sequence of applications of
fusion rules. As a corollary we get that context-dependent fusion grammars can
generate all recursive enumerable languages.

Relating computational models to Turing machines is an old and established
approach which can be found in most foundations textbooks in theoretical com-
puter science. Moreover, it is well known that graph transformation in general
is Turing-complete. In 1978 Uesu presented a system of graph grammars that
generates all recursively enumerable sets of labeled graphs (cf. [8]). Furthermore,
asking “what programming constructs are needed on top of graph transformation
rules to obtain a computationally complete language” [9] is not a new question.
Habel and Plump also presented a graph program that simulates a Turing ma-
chine (cf. [9]). With respect to variants of fusion grammars many questions are
open due to the novelty of the approach. However, in [10] it is shown that fusion
grammars with additional rules for the inverse operation to fusion can simulate
Chomsky grammars and connective hypergraph grammars.

The paper is organized as follows. In Section 2, basic notions and notations of
hypergraphs are recalled. Section 3 and 4 recall the notions of Turing machines
and context-dependent fusion grammars, respectively. Section 5 presents the
reduction of Turing machines to context-dependent fusion grammars. Section 6
concludes the paper pointing out some open problems. All the proofs are omitted
due to the lack of space.

2 Preliminaries

We consider hypergraphs the hyperedges of which have multiple sources and
multiple targets. A hypergraph over a given label alphabet Σ is a system H =
(V,E, s, t, lab) where V is a finite set of vertices, E is a finite set of hyperedges,
s, t : E → V ∗ are two functions assigning to each hyperedge a sequence of sources
and targets, respectively, and lab : E → Σ is a function, called labeling. The
components of H = (V,E, s, t, lab) may also be denoted by VH , EH , sH , tH , and
labH respectively. The class of all hypergraphs over Σ is denoted by HΣ .

Let pr : V ∗ × N→ V be defined as pr(v1v2 . . . vn, i) = vi if 1 ≤ i ≤ n, where
n is the length of the sequence. It is undefined otherwise.

Let H ∈ HΣ , and let ≡ be an equivalence relation on VH . Then the fu-
sion of the vertices in H with respect to ≡ yields the hypergraph H/≡ =
(VH/≡, EH , sH/≡, tH/≡, labH) with the set of equivalence classes VH/≡ = {[v] |
v ∈ VH} and sH/≡(e) = [v1] · · · [vk1 ], tH/≡(e) = [w1] · · · [wk2 ] for each e ∈ EH
with sH(e) = v1 · · · vk1 , tH(e) = w1 · · ·wk2 .

1 Instead of Turing machines some other equivalent computational formalism could
be chosen, e.g. Petri nets with inhibitor arcs which would be an extension of the
transformation presented in [7]. In the considered approaches the transformations
were technical and of similar complexity. Turing machines have the advantage of
being an established and well known computational model.
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Given H,H ′ ∈ HΣ , a hypergraph morphism g : H → H ′ consists of two
mappings gV : VH → VH′ and gE : EH → EH′ such that sH′(gE(e)) = g∗V (sH(e)),
tH′(gE(e)) = g∗V (tH(e)) and labH′(gE(e)) = labH(e) for all e ∈ EH , where
g∗V : V ∗H → V ∗H′ is the canonical extension of gV , given by g∗V (v1 · · · vn) = gV (v1)
· · · gV (vn) for all v1 · · · vn ∈ V ∗H .

Given H,H ′ ∈ HΣ , H is a subhypergraph of H ′, denoted by H ⊆ H ′, if
VH ⊆ VH′ , EH ⊆ EH′ , sH(e) = sH′(e), tH(e) = tH′(e), and labH(e) = labH′(e)
for all e ∈ EH . H ⊆ H ′ implies that the two inclusions VH ⊆ VH′ and EH ⊆ EH′

form a hypergraph morphism from H → H ′.
Let H ′ ∈ HΣ as well as V ⊆ VH′ and E ⊆ EH′ . Then the removal of (V,E)

from H ′ given by H = H ′ − (V,E) = (VH′ − V,EH′ − E, sH , tH , labH) with
sH(e) = sH′(e), tH(e) = tH′(e) and labH(e) = labH′(e) for all e ∈ EH′ − E
defines a subgraph H ⊆ H ′ if sH′(e), tH′(e) ∈ (VH′ − V )∗ for all e ∈ EH′ − E.
Let H ∈ HΣ , H ′ ⊆ H. Then H −H ′ = H − (VH′ , EH′).

Let H ∈ HΣ and H ′ = (V ′, E′, s′, t′ : E′ → (VH + V ′)∗, lab′ : E′ → Σ) be
some quintuple with two sets V ′, E′ and three mappings s′, t′ and lab′ where
+ denotes the disjoint union of sets. Then the extension of H by H ′ given by
H ′′ = (VH + V ′, EH +E′, s, t, lab) with s(e) = sH(e), t(e) = tH(e) and lab(e) =
labH(e) for all e ∈ EH as well as s(e) = s′(e), t(e) = t′(e) and lab(e) = lab′(e)
for all e ∈ E′ is a hypergraph with H ⊆ H ′′.

Let H ∈ HΣ and let att(e) be the set of source and target vertices for
e ∈ EH . H is connected if for each v, v′ ∈ VH , there exists a sequence of triples
(v1, e1, w1) . . . (vn, en, wn) ∈ (VH × EH × VH)∗ such that v = v1, v

′ = wn and
vi, wi ∈ att(ei) for i = 1, . . . , n and wi = vi+1 for i = 1, . . . , n − 1. A subgraph
C of H, denoted by C ⊆ H, is a connected component of H if it is connected
and there is no larger connected subgraph, i.e., C ⊆ C ′ ⊆ H and C ′ connected
implies C = C ′. The set of connected components of H is denoted by C(H).

Given H,H ′ ∈ HΣ , the disjoint union of H and H ′ is denoted by H + H ′.
Further, k · H denotes the disjoint union of H with itself k times. We use the
multiplication of H defined by means of C(H) as follows. Let m : C(H) → N be
a mapping, called multiplicity, then m ·H =

∑
C∈C(H)m(C) · C.

A string can be represented by a simple path where the sequence of labels
along the path equals the given string. Let w = x1 . . . xn ∈ Σ∗ for n ≥ 1 and
xi ∈ Σ for i = 1, . . . , n. Let [n] = {1, . . . , n}. Then the string graph of w is
defined by sg(w) = ({0}∪ [n], [n], sw, tw, labw) with sw(i) = (i−1), tw(i) = i and
lab(i) = xi for i = 1, . . . , n. The string graph of the empty string ε, denoted by
sg(ε), is the discrete graph with a single node 0. Obviously, there is a one-to-one
correspondence between Σ∗ and sg(Σ∗) = {sg(w) | w ∈ Σ∗}.

3 Turing Machines

In this section, we shortly recall the notion of Turing machines (see, e.g., [11,12,13])
and their recognized languages. We consider Turing machines with a designated
start and accept state and one two-sided infinite tape.
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Definition 1. 1. A Turing machine is a system TM = (Q,Ω, Γ,∆), where Q is
a finite set of states with two designated different states qstart and qaccept,
Ω is the input alphabet, Γ is the tape alphabet with Ω ⊆ Γ and � ∈ Γ \Ω,
where � is the blank symbol, and ∆ ⊆ (Q\{qaccept})×Γ ×Γ ×{l, n, r}×Q
is the transition relation.

2. conf (TM ) = Q × (�∞ · Γ ∗) × Γ × (Γ ∗ · �∞) is the set of configurations,
where �∞ denotes an infinite sequence of �-symbols.

3. A step of TM is defined by the relation `TM⊆ conf (TM )× conf (TM ):

(p, αu, x, β) `TM (q, α, u, yβ) if (p, x, y, l, q) ∈ ∆
(p, α, x, β) `TM (q, α, y, β) if (p, x, y, n, q) ∈ ∆

(p, α, x, uβ) `TM (q, αy, u, β) if (p, x, y, r, q) ∈ ∆
4. A computation of TM is a potentially infinite sequence of configurations
c0, c1, . . . where c0 = (qstart×�∞× x× β�∞) for some x ∈ Γ, β ∈ Γ ∗ is the
start configuration, and ci `TM ci+1 for all i ∈ N.

5. The recognized language of TM is defined as

L(TM ) = {w ∈ Ω∗ | (qstart,�∞, x, w′) `∗TM (qaccept,�∞α, y, β�∞)},
where either x = � and w′ = �∞ if w = ε, i.e., the empty string, or
x = w1 and w′ = w2 . . . wn�∞ if w = w1w2 . . . wn 6= ε; α, β ∈ Γ ∗, y ∈ Γ are
arbitrary.

Remark 1. 1. (p, x, y, dir, q) ∈ ∆ means if the Turing machine is in state p and
reads the symbol x than it can replace x by y and move the (read/write)
head to the left if dir = l, to the right if dir = r or leave the head stationary
if dir = n. Afterwards the machine is in state q.

2. A configuration is of the form (q, α, x, β) which means the machine is in state
q, reads currently the symbol x and the contents of the tape to the left and
right of the head are α and β, respectively.

3. A computation is finite if a halting configuration is reached, i.e., if there is
no possibility of continuing the computation. If the machine enters the state
qaccept, then it accepts the input.

4. The recognized language consists of all strings for which a computation exists
such that the machine enters the accepting state qaccept.

4 Context-Dependent Fusion Grammars

In this section, we recall context-dependent fusion grammars introduced in [7].
Context-dependent fusion grammars generate hypergraph languages from start
hypergraphs via successive applications of context-dependent fusion rules, mul-
tiplications of connected components, and a filtering mechanism. A fusion rule
is defined by two complementary-labeled hyperedges and positive and negative
context-conditions. Such a rule is applicable if both the positive and negative
context-conditions of the rule are satisfied. Its application consumes the two
hyperedges and fuses the sources of the one hyperedge with the sources of the
other as well as the targets of the one with the targets of the other.
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vk1
. . .

v1 v′1
. . .

v′k1

A A

wk2

. . .

w1 w′1

. . .

w′k2

k11

k21

k11

k21

Fig. 1: The fusion rule fr(A) with type(A) = (k1, k2)

Definition 2. 1. F ⊆ Σ is a fusion alphabet if it is accompanied by a comple-
mentary fusion alphabet F = {A | A ∈ F} ⊆ Σ, where F ∩F = ∅ and A 6= B
for A,B ∈ F with A 6= B and a type function type : F ∪ F → (N× N) with
type(A) = type(A) for each A ∈ F .

2. For each A ∈ F with type(A) = (k1, k2), the fusion rule fr(A) is the hy-
pergraph, depicted in Figure 1, with Vfr(A) = {vi, v′i | i = 1, . . . , k1} ∪
{wj , w′j | j = 1, . . . , k2}, Efr(A) = {e, e}, sfr(A)(e) = v1 · · · vk1 , sfr(A)(e) =
v′1 · · · v′k1 , tfr(A)(e) = w1 · · ·wk2 , tfr(A)(e) = w′1 · · ·w′k2 , and labfr(A)(e) = A

and labfr(A)(e) = A.
3. The application of fr(A) to a hypergraph H ∈ HΣ proceeds according to the

following steps: (1) Choose a matching morphism g : fr(A)→ H. (2) Remove
the images of the two hyperedges of fr(A) yielding X = H−(∅, {g(e), g(e)}).
(3) Fuse the corresponding source and target vertices of the removed hy-
peredges yielding the hypergraph H ′ = X/≡ where ≡ is generated by the
relation {(g(vi), g(v′i)) | i = 1, . . . , k1} ∪ {(g(wj), g(w′j)) | j = 1, . . . , k2}.
The application of fr(A) to H is denoted by H =⇒

fr(A)
H ′ and called a direct

derivation.
4. A context-dependent fusion rule is a triple cdfr = (fr(A), PC,NC) for some
A ∈ F where PC and NC are two finite sets of hypergraph morphisms with
domain fr(A) mapping into finite contexts defining positive and negative
context conditions respectively.

5. The rule cdfr is applicable to some hypergraph H via a matching morphism
g : fr(A) → H if for each (c : fr(A) → C) ∈ PC there exists a hypergraph
morphism h : C → H such that h is injective on the set of hyperedges and
h◦c = g, and for all (c : fr(A)→ C) ∈ NC there does not exist a hypergraph
morphism h : C → H such that h ◦ c = g.

6. If cdfr is applicable to H via g, then the direct derivation H =⇒
cdfr

H ′ is the

direct derivation H =⇒
fr(A)

H ′.

Remark 2. fr(A) and (fr(A), ∅, ∅) are equivalent. We use the first as an abbre-
viation for the latter.

Given a finite hypergraph, the set of all possible successive fusions is finite as
fusion rules never create anything. To overcome this limitation, arbitrary multi-
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plications of disjoint components within derivations are allowed. The generated
language consists of the terminal part of all resulting connected components
that contain no fusion symbols and at least one marker symbol, where marker
symbols are removed in the end. These marker symbols allow us to distinguish
between wanted and unwanted terminal components.

Definition 3. 1. A context-dependent fusion grammar is a system CDFG =
(Z,F,M, T, P ) where Z ∈ HF∪F∪T∪M is a start hypergraph consisting of a
finite number of connected components, F ⊆ Σ is a finite fusion alphabet,
M ⊆ Σ with M ∩ (F ∪ F ) = ∅ is a finite set of markers, T ⊆ Σ with
T ∩ (F ∪ F ) = ∅ = T ∩M is a finite set of terminal labels, and P is a finite
set of context-dependent fusion rules.

2. A direct derivation H =⇒H ′ is either a context-dependent fusion rule ap-
plication H =⇒

cdfr
H ′ for some cdfr ∈ P or a multiplication H =⇒

m
m · H for

some multiplicity m : C(H) → N. A derivation H
n

=⇒H ′ of length n ≥ 0 is
a sequence of direct derivations H0 =⇒H1 =⇒ . . .=⇒Hn with H = H0 and
H ′ = Hn. If the length does not matter, we may write H

∗
=⇒H ′.

3. L(CDFG) = {remM (Y ) | Z ∗
=⇒H,Y ∈ C(H) ∩ (HT∪M \ HT )} is the gen-

erated language where remM (Y ) is the terminal hypergraph obtained by
removing all hyperedges with labels in M from Y .

5 Transformation of Turing Machines into
Context-Dependent Fusion Grammars

In this section, we transform Turing machines into context-dependent fusion
grammars such that the recognized language of the Turing machine and the
generated language of the corresponding context-dependent fusion grammar co-
incide up to representation of strings as graphs. The construction uses a graph-
ical representation of Turing machines and simulates a step of the machine by
a sequence of context-dependent fusion rules. In our construction positive and
negative context conditions are needed to restrict the applicability of fusion rules
in order to obtain a correct and sound transformation. Some of the context con-
ditions derive directly from the semantics of a Turing machine. For example,
the step (p, αu, x, β) `TM (q, α, u, yβ) can only be applied if (p, x, y, l, q) ∈ ∆,
the Turing machine is in state p and reads the symbol x. Other context condi-
tions are needed because (context-dependent) fusion rules can only consume two
hyperedges at a time.

Because the transformation is quite complicated we introduce the ideas step
by step. First, we introduce the tape graph representing the working tape as
well as the input to the Turing machine. Afterwards, we give a hypergraph
representation of Turing machines and configurations and demonstrate how a
step can be simulated by a sequence of context-dependent fusion rules. Finally,
the two constructions are combined and our main theorem is presented.

6



af cf bfB C

Fig. 2: The extendable string graph Bsg(f(acb))C

5.1 Tape graph

In our construction the tape is represented by an infinitely extendable tape
graph. We cut off the infinite �-strings to the left and to the right and add
� by rules if they are needed. Furthermore, due to technical reasons, the tape
graph contains two connected corresponding string graphs, where one is labeled
over the terminal alphabet Ω and the other is labeled over the fusion alphabet
Γf = (Γ \Ω)+Ωf , where Ωf = {xf | x ∈ Ω}. This is because in fusion grammars
fusion alphabets and terminal alphabets are disjoint but Ω ( Γ by definition of
the Turing machine. The construction can be seen as having two tapes initially
with the same content, where the first tape is left invariant. If the machine halts
in the accepting state, then the content of the first tape is used as a contribution
to the generated language. Due to the construction of Γf we need a mapping
f : Γ ∗ → Γ ∗f defined by f(x) = xf , if x ∈ Ω, and f(x) = x, otherwise. The
mapping is defined for infinite strings because f(�∞α�∞) = �∞f(α)�∞, where
α = α1 · · ·αn with α1 6= � 6= αn. For example, the infinite string �∞acb�∞ is
represented by the graph Bsg(f(acb))C, depicted in Figure 2, where B and C are
fusion labels used for extending the string graphs sg(f(acb)). The fusion labels B
and C allow us to generate for each each i, j ∈ N the graph Bsg(�if(acb)�j)C.

Definition 4. 1. Let α, β ∈ Γ ∗, x ∈ Γ,w ∈ Ω∗. Let cut,B and C be fusion
symbols with type(B) = (0, 1), type(C) = (1, 0), and type(cut) = (1, 1), and
let sg(cut·w)µ be the string graph with an additional µ-labeled loop attached
to the first vertex of sg(w). Then

tg(α, x, β, w) = (Bsg(f(αxβ))C + sg(cut · w)µ)/s(f(x))≡s(cut)

where f(x) and cut are the respective labeled hyperedge in the two string
graphs. We call these graphs tape graphs.

2. As a special case we define the hypergraph tg(ε,⊥, ε, ε) = cut

CB µ
,

where ⊥/∈ Γ is used for representing the absence of a symbol.

3. For each tg(α, x, β, w) define tg(α, x, β, w)tape which is tg(α, x, β, w) with an
additional tape-hyperedge attached to the source vertex of the cut-hyperedge.

4. Let cut,B and C be as before. Let Ftg = {tape, gen, cut,B,C} + Γf be a
fusion alphabet with type(tape) = (0, 1), and type(gen) = type(x) = (1, 1)
for each x ∈ Γf . Define

CDFG tg(Ω,Γ ) = (Ztg , Ftg , {µ}, Ω, {fr(gen), fr(B), fr(C)}),

7



tape

gen

cutB
µ

(a) tapestart

gen

gen

xf x

(b) tapex

gen

C

(c) tapeend

�B B

(d) tapeB

� CC

(e) tapeC

Fig. 3: The connected components of the start hypergraph Ztg .

where the start hypergraph Ztg = tapestart + tapeend +
∑
x∈Ω

tapex + tapeB +

tapeC consists of the connected components depicted2 in Figure 3.

Remark 3. The connected components tapestart, tapex for x ∈ Ω and tapeend
and the fusion rule fr(gen) are used to generate the two connected corresponding
string graphs. The terminal-labeled string graph carries a marker hyperedge. The
two corresponding string graphs are connected via a hyperedge labeled cut. tapeB
and tapeC as well as the fusion rules fr(B) and fr(C) are used to extend the
latter string graphs with �-labeled hyperedges an unbounded number of times.
The tape-hyperedge is later used for attaching the tape graph to a hypergraph
representation of a Turing machine and the cut-hyperedge is used to disconnect
the terminal- and marker-labeled string graph.

Example 1. Let Ω = {a, b, c} and Γ = {a, b, c,�}. Then by definition
CDFGexample(Ω,Γ ) = (Zexample, {tape, gen, cut,B,C, af , bf , cf ,�}, {µ}, Ω, Ptg)
with Zexample = tapestart + tapeend + tapea + tapeb + tapec + tapeB + tapeC and
Ptg denotes the set of context-dependent fusion rules specified in CDFG tg(Ω,Γ ).
A derivation may be

Zexample =⇒
fr(gen)

tapestarta + tapeend + tapeb + tapec + tapeB + tapeC

=⇒
fr(gen)

tapestartac + tapeend + tapeb + tapeB + tapeC

=⇒
fr(gen)

tapestartac + tapebend + tapeB + tapeC

=⇒
fr(gen)

tg(ε, a, cb, acb)tape + tapeB + tapeC,

where first tapestart and tapea are fused wrt the two complementary gen- and
gen-hyperedges yielding tapestarta, then tapestarta and tapec are fused yield-
ing tapestartac, then tapeend and tapeb are fused yielding tapebend, and finally
tapestartac and tapebend are fused yielding tg(ε, a, cb, acb)tape which is depicted
in Figure 4a.

2 We depict hyperedges with one source and one target with labels x ∈ Σ \ F by

x
.
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tape cut

µ
a c b

af cf bfB C

(a) tg(ε, a, cb, acb)tape

a
c

b

af

cfbf

(b) obtained from tapeacb

Fig. 4: Some hypergraphs derivable in CDFGexample(Ω,Γ )

Another example is the hypergraph in Figure 4b. This hypergraph is deriv-
able because fusions within some connected component – in this case tapeacb –
is possible. Note that the left connected component is terminal labeled. How-
ever, it does not contribute to the generated language because it lacks a marker
hyperedge.

Proposition 1. For each tg(�i, x, w·�j , w′) where i, j ∈ N and either x =⊥ and

w = w′ = ε or x ∈ Ω, w ∈ Ω∗ and w′ = xw exists a derivation Z
∗

=⇒ tg(�i, x, w ·
�j , w′)tape in CDFG tg(Ω,Γ ).

Proposition 2. L(CDFG tg(Ω,Γ )) = ∅.

If the cut-hyperedge in some tape graph is fused with the complementary
hyperedge in zcut = cut (which is not present in Ztg) then this yields two
connected components one of which is sg(w)µ for some w ∈ Ω∗.

Proposition 3. Let CDFGtg+cut(Ω,Γ ) = (Ztg + zcut, Ftg , {µ}, Ω, P ′tg), where
P ′tg = Ptg ∪ {fr(cut)}. Then L(CDFGtg+cut(Ω,Γ )) = {sg(w) | w ∈ Ω∗}.

5.2 A hypergraph representation of Turing machines and their
configurations

In the hypergraphical representation of a Turing machine, denoted by hg(TM ),
vertices represent states and hyperedges between these vertices represent the ele-
ments of the transition relation, i.e., (p, x, y, dir, q) ∈ ∆ implies e ∈ Ehg(TM ) with
s(e) = p, t(e) = q, lab(e) = x/y/dir. The tape graph is connected to hg(TM ) by
a hyperedge with |Q| sources and one target, called head, where the sources are
the states of the Turing machine and the target is a vertex in the tape graph. The
order in which the states of the Turing machine are connected to the sources
of the head-hyperedge implements a permutation σ. The head-hyperedge has
three purposes: (1) It is used to connect hg(TM ) to a tape graph, (2) it signifies
the current state (specifically, the current state is the first source), and (3) it
points to the current symbol to be read. This connected component consisting
of the tape graph, the hypergraph representation of the Turing machine and the
head-hyperedge is used for representing configurations. Therefore, it is called
hypergraph representation of the configuration with adjunct w and permutation
σ, where w is the terminal labeled string graph in the tape graph.

9



cut

µ
a c b

� af cf bfB C

qaccept qstart q1 q2

q3q4

q5

head
1

2
7

6 a/�/r b/b/r

�/�/l

b/�/l

�/�/n

c/c/n, b/b/n

c/c/n, �/�/n
a/a/n, c/c/n

�/�/r a/a/r

b/b/r

a/a/l, b/b/l

a/a/n, b/b/n, c/c/n

Fig. 5: hg(qstartq2q3q4q5qaccept,�, a, cb, acb) where the head-hyperedge is dashed.
Parallel edges are indicated by a comma-separated list in the labels in order to
clarify the drawing.

Definition 5. Let TM = (Q,Ω, Γ,∆) be a Turing machine.

1. Let q1 · · · q|Q| be a sequence of states of Q, where each state occurs exactly
once. Define hg(TM , q1 · · · q|Q|) = (Q+ {vhead}, {head}+∆, s, t, lab), where
– s(head) = q1 . . . q|Q|, t(head) = vhead, and lab(head) = head,
– s(δ) = p, t(δ) = q, and lab(δ) = x/y/dir, where δ = (p, x, y, dir, q) ∈ ∆.

2. Let c = (q,�∞ · α′, x, β′ · �∞) ∈ conf (TM ), α′ = α′1 · · ·α′n, α′1 6= �, β′ =
β′1 · · ·β′n, β′n 6= �, let w ∈ Ω∗, let again cut be a fusion symbol with type
(1, 1), and let sg(cut · w)µ be the string graph with an additional µ-labeled
loop attached to the first vertex of sg(w) ⊂ sg(cut · w)µ. Let q1 · · · q|Q| be
a sequence of states of Q where q1 = q. Define hg(q1 · · · q|Q|, α′, x, β′, w) =
(hg(TM , q1 · · · q|Q|)+tg(α′, x, β′, w))/vhead≡s(cut) where cut is the cut-labeled
hyperedge. We call hg(q1 · · · q|Q|, α′, x, β′, w) the hypergraph representation
of the configuration c with adjunct w and permutation q1 · · · q|Q|.

Example 2. Easily one can construct a Turing machine which recognizes the
language {anbn | n ≥ 0}. A hypergraph representation of the configuration
(qstart,�∞�, a, cb�∞) with adjunct acb and permutation qstartq2q3q4q5qaccept
is shown in Figure 5.

5.3 Simulating steps of a Turing machine by context-dependent
fusion rules

In order to simulate a step further connected components are needed. These
connected components encode the substitution of the symbol on the tape, the
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(a) C(u, x/y/l, i)
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head
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head
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(b) C(−, x/y/n, i)
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head
i

head

1

xfuf

yfuf

(c) C(u, x/y/r, i)

Fig. 6: Schematic drawings of connected components used for simulating a step
of a Turing machine

movement of the head and the transition to the next state. In order to move the
head to the left or to the right our construction takes both the current symbol
and the symbol to the left of the head into account. The relations of the Turing
machine can be seen as replacing or deleting the current symbol and (maybe)
inserting a new symbol left or right of the head. In the graph representation
this corresponds to deleting and inserting edges. These deletions and insertions
are done with respective fusions of complementary labeled hyperedges. The hy-
pergraphs in Figure 6a–6c are schematic drawings of the connected components
used for simulating a step of a Turing machine. The dots indicate that there are
|Q| vertices as sources. Two complementary head and head-hyperedges attached
to the same vertices are part of this connected component, where the order-
ing of the source attachments of the head-hyperedge implements a permutation
such that the first and ith source are swapped. Formally, these components are
defined as follows.

Definition 6. Let {head} + Γf be a fusion alphabet with type(head) = (|Q|, 1)
and type(x) = (1, 1) for each x ∈ Γf . Let Λ = {x/y/dir | x, y ∈ Γ, dir ∈
{l, n, r}}.
1. For each u ∈ Γf , x/y/l ∈ Λ, i ∈ N, 0 < i ≤ |Q| define
C(u, x/y/l, i) = ({v1, . . . , v|Q|+3}, {e1, . . . , e6}, s, t, lab) where
– s(e1) = v1v2 · · · vi · · · v|Q|, t(e1) = v|Q|+1, lab(e1) = head

– s(e2) = viv2 · · · v1 · · · v|Q|, t(e2) = v|Q|+1, lab(e2) = head
– s(e3) = t(e3) = v|Q|+1, lab(e3) = uf
– s(e4) = v|Q|+1, t(e4) = v|Q|+3, lab(e4) = uf
– s(e5) = v|Q|+1, t(e5) = v|Q|+2, lab(e5) = xf
– s(e6) = v|Q|+2, t(e4) = v|Q|+3, lab(e6) = yf .

2. For each x/y/n ∈ Λ, i ∈ N, 0 < i ≤ |Q| define
C(−, x/y/n, i) = ({v1, . . . , v|Q|+2}, {e1, . . . , e4}, s, t, lab) where
– s(e1) = v1v2 · · · vi · · · v|Q|, t(e1) = v|Q|+1, lab(e1) = head

– s(e2) = viv2 · · · v1 · · · v|Q|, t(e2) = v|Q|+1, lab(e2) = head
– s(e3) = s(e4)v|Q|+1, t(e3) = t(e4) = v|Q|+2, lab(e3) = yf , lab(e4) = xf .

3. For each u ∈ Γf , x/y/r ∈ Λ, i ∈ N, 0 < i ≤ |Q| define
C(u, x/y/r, i) = ({v1, . . . , v|Q|+3}, {e1, . . . , e6}, s, t, lab) where
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– s(e1) = v1v2 · · · vi · · · v|Q|, t(e1) = v|Q|+2, lab(e1) = head

– s(e2) = viv2 · · · v1 · · · v|Q|, t(e2) = v|Q|+2, lab(e2) = head
– s(e3) = t(e3) = v|Q|+2, lab(e3) = xf
– s(e4) = v|Q|+1, t(e4) = v|Q|+3, lab(e4) = uf
– s(e5) = v|Q|+1, t(e5) = v|Q|+2, lab(e5) = uf
– s(e6) = v|Q|+2, t(e4) = v|Q|+3, lab(e6) = yf .

In order to simulate a step of a Turing machine context-dependent fusion rules
are needed. Because (context-dependent) fusion rules can only fuse two comple-
mentary hyperedges in one derivation step but a step of a Turing machine is much
more complicated (head movement, tape manipulation, state transition) several
rules and rule applications are needed to simulate such a step. Furthermore, in
our construction positive and negative context conditions are needed to restrict
the application to obtain a correct and sound simulation. The in the following
defined set of context-dependent fusion rules P∆ contains rules with respect to
the fusion symbol head and rules with respect to the fusion symbol x for each
x ∈ Γ . The first are used to fuse the head-hyperedge in the graph representation
of a configuration with the correct connected component used for simulating the
step of the Turing machine and perform the state transition. The latter are used
to modify the tape and move the head correctly. We use fuse(x) as a short-
hand for some rule in the latter set in P∆ if there is no need to distinguish.
The fuse(x) rules are constructed in such a way that the two complementary
hyperedges must be attached to the same vertex and that never two rules are
applicable at the same time with respect to the same connected component. This
is achieved by defining fuse 2in(x) and fuse loop in(x) as well as fuse 2out(x)
and fuse loop out(x) in such a way that the positive context condition of the first
is reflected in the negative context condition of the other. Further, in order to
distinguish the applicability of fuse loop in(x) and fuse loop out(x) if in-going
and out-going edges (wrt some vertex where the loop is attached) are labeled
with the same symbol, the number of out-going (in-going) edges, respectively, is
of relevance. If the number of out-going (in-going) edges is 4, then the loop must
be fused with the in-going (out-going) edge, respectively. fuse loop in(x) and
fuse loop out(x) do not need negative context conditions because the positive
context does not occur in the C-components of Definition 6.

Definition 7. Define P∆ as the following set of context-dependent fusion rules.

P∆ = {∆(u, λ) | u ∈ Γ, λ ∈ Λ}
∪ {fuse 2in(x), fuse 2out(x), fuse loop in(x), fuse loop out(x) | x ∈ Γ}

∆(u, λ) = (fr(head), {fr(head) → PC(u, λ, j) + C(u, λ, j) | 0 < j ≤ |Q|},
{fr(head)→ twoin(u) + h

• | u ∈ Γ}) ∪ {fr(head)→ twoout(u) + h
• | u ∈ Γ}),

where the morphism in the positive context maps the head-hyperedge to the
one in PC(u, λ, j), depicted in Figure 7a, and the head-hyperedge to the one in
C(u, λ, j). Note that, the connected component C(u, λ, j) is induced by the jth
source of the head-hyperedge and the parameters u, λ. twoin(u), twoout(u) and

h
•

are depicted in Figure 7b, 7c and 7d, respectively.
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Fig. 7: Some contexts for applying rules simulating a step

fuse 2in(x) = (fr(x), {fr(x) → twoin(x)}, {fr(x) → twoin2h(x), fr(x) →
loop/in(x), fr(x) → triangle(x)} ∪ {fr(x) → twoinextraloop(x, z) | z ∈ Γ}),
where fr(x)→ triangle(x) maps the x-hyperedge to e ∈ Etriangle(x) with s(e) =
v2 and t(e) = v3; fr(x)→ twoinextraloop(x, z) maps the x-hyperedge to the one
above the the x-hyperedge (which is relevant for the case z = x). The respective
hypergraphs used in the context conditions are depicted in Figure 7.

fuse 2out(x) = (fr(x), {fr(x) → twoout(x)}, {fr(x) → twoout2h(x),
fr(x) → loop/out(x), fr(x) → triangle(x)} ∪ {fr(x) → twooutextraloop(x, z) |
z ∈ Γ}) is analog but fr(x) → triangle(x) maps the x-hyperedge to e ∈
Etriangle(x) with s(e) = v1 and t(e) = v2.

fuse loop in(x) = (fr(x), {fr(x) → PCloopin(x)}, ∅), where PCloopin(x)
is depicted in Figure 7l and in the positive context condition the x-hyperedge
matches the one with target v and the x-hyperedge matches the one with source
and target v.

fuse loop out(x) = (fr(x), {fr(x) → PCloopout(x)}, ∅), is analog but the
x-hyperedge matches the one with source v. PCloopout(x) is depicted in Fig-
ure 7m.

Example 3. Consider the hypergraph hg(qstartq2q3q4q5qaccept,�, a, cb, acb) +
C(�, a/�/r, 2). The context-dependent fusion rule ∆(�, a/�/r) can be applied
by matching the head-hyperedge in hg(qstartq2q3q4q5qaccept,�, a, cb, acb) and the
head-hyperedge in C(�, a/�/r, 2). The two complementary hyperedges are fused
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� af cf bfB C
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Fig. 8: The tape graph with the additional vertices and hyperedges

and due to the head-hyperedge in C(�, a/�/r, 2) a new head-hyperedge recon-
structed; its first source is q2. Furthermore, the application attaches additional
vertices and hyperedges to the tape graph The tape graph is depicted in Fig-
ure 8. The af -hyperedge is then fused with the out-going af -hyperedge by an
application of fuse loop out(a) with the result that the source and the target
vertex of the af -hyperedge are glued together. Afterwards, fuse 2in(�) can be
applied to the �- and �-hyperedge depicted to the left of the center vertex vtape.
The resulting connected component is hg(q2qstartq3q4q5qaccept,��, c, b, acb).

5.4 Construction of a context-dependent fusion grammar
corresponding to a Turing machine

Now we combine the previous constructions in a context-dependent fusion gram-
mar. Using a similar construction as in Definition 5 the initial hypergraph
representation of the Turing machine is defined. This connected component
is equipped with an tape-hyperedge. such that if the tape-hyperedge and the
tape-hyperedge in the generated tape graph (with additional tape-hyperedge as
in Definition 4) are fused, then this yields a hypergraph representation of a
start configuration. Furthermore, additional context-dependent fusion rules are
needed (1) for connecting the initial hypergraph representation of the Turing
machine with the generated tape graph, (2) for acceptance and (3) for discon-
necting3 the terminal and marker labeled string graph sg(w)µ for some w ∈ Ω∗.

Definition 8. Let TM = (Q,Ω, Γ,∆) be a Turing machine. Let CDFG tg(Ω,Γ ) =
(Ztg , Ftg , {µ}, Ω, Ptg) be the context-dependent fusion grammar generating tape
graphs according to Definition 4. Let C(u, λ, i) be the connected component and
P∆ be the set of context-dependent fusion rules defined in Definition 6 and 7,
respectively. Then

CDFG(TM ) = (ZTM , {head}+ Ftg , {µ}, {term}+Ω + Λ,PTM )

is the corresponding context-dependent fusion grammar where
ZTM = Ztg + hg(TM )init + Acc +

∑
u∈Γf ,λ∈Λ
0<i≤|Q|

C(u, λ, i) where

hg(TM )init = hg(TM , qstartq2 · · · q|Q|) + (∅, {tape}) with s(tape) = ε, t(tape) =

3 Disconnecting sg(w)µ uses similar ideas as discussed in Proposition 3.
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Fig. 9: Schematic drawings of connected components used for acceptance and for
disconnecting the terminal and marker labeled string graph.

vtape, and lab(tape) = tape, where ε denotes the empty sequence, and
Acc = ({v1, . . . , v|Q|+2}, {e1, . . . , e3}, s, t, lab) where s(e1) = v1v2 · · · vi · · · v|Q|,
t(e1) = v|Q|+1, lab(e1) = term, s(e2) = viv2 · · · v1 · · · v|Q|, t(e2) = v|Q|+1,

lab(e2) = head, s(e3) = v|Q|+1, t(e3) = v|Q|+2, lab(e3) = cut. A schematic
drawings of Acc is depicted in Figure 9a.

PTM = Ptg ∪ P∆ ∪ {fr(tape), accept, fuse cut} where
accept = (fr(head), {fr(head) → PCacc + Acc}, {fr(head) → c + Acc | c ∈
C( ∑
x∈Γf ,λ∈Λ
0<i≤|Q|

C(x, λ, i))}), where PCacc = (Q+{vtape}, {head}, s, t, lab) with s(head) =

qacceptq1 . . . q|Q|−1, t(head) = vtape, and lab(head) = head, where q1 . . . q|Q|−1 are
the states of Q \ {qaccept} in arbitrary order. A schematic drawings of PCacc is
depicted in Figure 9b;

fuse cut = (fr(cut), {fr(cut) → ({v1, v2, v3}, {e1, e2}, s, t, lab)}, ∅), where
s(e1) = s(e2) = v1, t(e1) = v2, t(e2) = v3 and lab(e1) = cut, lab(e2) = cut,
i.e., the source of the two complementary hyperedges must be the same and the
targets different. The connected component is depicted in Figure 9c.

Our main theorem is that the language recognized by some Turing machine
and the generated language of the corresponding context-dependent fusion gram-
mar coincide up to representation of strings as graphs.

Theorem 1. L(CDFG(TM )) = {sg(w) | w ∈ L(TM )}.

6 Conclusion

In this paper, we have continued the research on context-dependent fusion gram-
mars by transforming Turing machines into this type of hypergraph grammars.
This reduction gives us interesting insights into these grammars because the
transformation proves that context-dependent fusion grammars are another uni-
versal computing model and can generate all recursive enumerable languages.
Note that a similar construction also works for computation of partial functions.
In this case the connected components tapestart, tapeend and tapex are replaced
by a tape graph representing the Turing machines input x1 . . . xn ∈ Σ∗, where
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the start is attached to some tape-hyperedge. However, further research is needed
including the following open question. Is it true that only positive or only nega-
tive context conditions are not powerful enough to simulate Turing machines?

Acknowledgment. We are greatful to Hans-Jörg Kreowski and Sabine Kuske as
well as to the anonymous reviewers for their valuable comments.
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Abstract. We present the �rst steps of an investigation into the rela-
tionship between contextual hyperedge replacement grammars and the
standard non-contextual kind. The formalisms are restated in a common
framework, discarding some of the specialized details (distinguished node
labels), and discuss the e�ects these changes have on the formalisms.
The resulting de�nitions are then applied to give a strengthened pump-
ing lemma for the normal case, which is then transferred into a novel
pumping lemma for the contextual case.

1 Introduction

Contextual hyperedge replacement grammars were introduced in [HM10] as an
extension of hyperedge replacement grammars [Hab92]. The more expressive
rules make it possible to, among other things, capture graph languages with ar-
bitrarily high levels of connectivity, which is not possible in normal hyperedge
replacement grammars. Examples of additional languages which can be captured
in this formalism include the language of all directed acyclic graphs and broad
classes of chart languages describing software architectures and code [DH15].
While many of the properties of contextual hyperedge replacement grammars
have been investigated, some of the technical choices have made it hard to di-
rectly relate them to hyperedge replacement grammars, and thus hard to reuse
the many deep results which exist for those. In this paper we give de�nitions of
both contextual and hyperedge replacement grammars within a common frame-
work, illustrate the e�ects of the small adjustments this necessitates, and use this
common framework to state a powerful pumping lemma for contextual hyper-
edge replacement languages (in the process also o�ering a Ogden-style [Ogd68]
pumping lemma for hyperedge replacement grammars). This is a �rst step to-
wards not only re�ning this lemma, but also investigating how further formalisms
could be treated within the same framework.

2 Preliminaries

Let N = {0, 1, 2, . . .}. A multiset A over (a normal set) S is de�ned by a mul-
tiplicity function S → nat, for a ∈ S let |A|a be the result of this multiplicity
function (intuitively the number of occurrences of a in A). For multisets A, B and
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any a we de�ne the multiset operations by letting |A ∪ B|a = max(|A|a, |B|a),
|A∩B|a = min(|A|a, |B|a), |A\B|a = max(0, |A|a−|B|a), |A]B|a = |A|a+|B|a,
and a ∈ A i� |A|a > 0. Applying an operator to a multiset and a normal set
S together we treat S as the multiset S′ over S with |S′|a = 1 for a ∈ S. For
normal sets S and T let S ] T denote the union where we assume, w.l.o.g that
S and T are (or can obviously be made, by e.g. renaming) disjoint.

Let S∗ denote the Kleene closure, the set of all �nite sequences over the set
S, including the empty sequence, denoted ε. A ranked symbol α has rank(α) ∈ N
de�ned, we may write α(k) to denote α with rank(α) = k. A (ranked) alphabet
Σ is a �nite set of (ranked) symbols. Alphabets and ranks will often be implicit
in their use, e.g. the existence of a ternary edge labeled a implies a(3) ∈ Σ.

We will often use a function f interchangeably with the characterizing set
{(x, y) | y = f(x) for some x}. We let a function f : S → T generalize to
powersets and sequences (e.g. writing f(s1, . . . , sn) to mean f(s1) · · · f(sn), for
s1, . . . , sn ∈ S) when there is no room for confusion.

A hypergraph g is a pair (ġ, ḡ) where ġ is a �nite set of nodes and ḡ a multiset
of edges, each edge (α, v1 · · · vn) ∈ ḡ consisting of a labeling ranked symbol α(n)

and the sequence of attached nodes v1, . . . , vn ∈ ġ∗ for n ∈ N. We will denote such
an edge α(v1, . . . , vn), further let lab(α(v1, . . . , vn)) = α and |α(v1, . . . , vn)| = n.

From here we refer to hypergraphs as just graphs. For a graph h we, with-
out specifying the tuple, let ḣ and h̄ denote the nodes and edges. In exam-
ples we will usually draw edge labels from the lowercase Latin letters a, b, c, . . .
(once introduced we will use uppercase for the nonterminal edge labels), us-
ing u, v, . . . speci�cally for unary edge labels, and the nodes from the integers
1, 2, 3, . . .. The edge a(1, 2) is considered a directed edge from 1 to 2 (a graph
with only directed edges is a digraph). We will often specify a graph simply as
a list of edges (bracketed if needed) and (when unconnected) nodes, e.g. the
directed triangle with two parallel a-labeled edges and two unconnected nodes:
[a(1, 2), a(1, 2), b(2, 3), c(3, 1), 4, 5]. Where the contextual hyperedge replacement
grammars in literature [DH15] label nodes separately from edges we opt to en-
code this in terms of unary edge labels (see Remark 2).

Let GΣ denote the set of all graphs labeled by the ranked alphabet Σ. Let
|g| = |ġ|+ |ḡ|. For a graph g and e ∈ ḡ we let g − e = (ġ, ḡ \ {e}) (i.e. removing
one occurrence of e), for g and v ⊆ ġ let g − v be g with all nodes in v, and all
edges incident with those nodes, removed. For any graphs g and h let g ] h =
(ġ ] ḣ, ḡ ] h̄), that is, the graph consisting of the two unconnected subgraphs g
and h (renaming some nodes if needed).

Remark 1. This de�nition of graphs di�ers from e.g. [Hab92] in three key ways.
Firstly hyperedges do not have outgoing and incoming attachments. This

adjustment is now standard, see e.g. the survey [DKH97], as di�erentiating be-
tween attachments adds nothing of structural importance to the languages. That
is, the information can be encoded in the labeling symbol instead.

Secondly the common de�nitions tend to di�erentiate some nodes as �exter-
nal� to facilitate graph compositions. These are mostly a technicality and are
not usually desirable in the languages generated. As such we here stick to a
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more traditional mathematical graph de�nition, and represent the points which
compositions act upon using specially labeled edges.

Thirdly, usually edges are de�ned as a set of opaque objects, mapped to labels
and attached nodes by functions. Here we instead opt to use multisets of edges
determined by those properties. This approach is used to avoid edge renaming
introducing additional symmetries, harmonizing with some software systems.

These changes are intended to make the representation simpler, but all results
can be restated within Habel's notation with a minimum of e�ort. �

3 Grammars and Graph Operations

In this section we de�ne the core of a common framework for the two formalisms
of immediate interest here, contextual and normal hyperedge replacement gram-
mars. This e�ort pays o� in some ways within this paper, enabling us to provide
novel pumping lemmas for both while limiting duplicated e�ort. The intention,
however, is to in the future extend this work to treat additional formalisms. A
notable example is the regular tree folding formalism of [Bjö18], which captures
many interesting graph languages by way of an iterative node merging technique,
and is very amenable to being stated in the style here proposed.

De�nition 1. For any graph g and R ⊆ ġ × ġ and some �xed global order on
the nodes1 let gJRK be (a graph isomorphic to) g with the nodes related by R
transitively collapsed into the smallest node. That is, for all i ∈ ġ, let Si be
the smallest set such that i ∈ Si and if (j, k) ∈ R then Sj = Sk, then taking
σ(i) = minSi we have gJRK = (σ(g), {(α, σ(s)) | (α, σ) ∈ ḡ}).
That is, gJRK is produced by collapsing all nodes which are related by R, tran-
sitively, into a single node.

De�nition 2. For any symbol x of rank k an x-handle in a graph g is a unique
edge x(v1, . . . , vk) ∈ ḡ. That is,

(∑
v1,...,vk∈ġ |ḡ|x(v1,...,vk)

)
= 1.

For any graphs g and h and symbols x(k) and y(k), such that g has an x-
handle ex = x(v1, . . . , vk), and h has a y-handle ey = y(v′1, . . . , v

′
k) de�ne

g ⊗x y h ≡ ((g − ex) ] (h− ey))J{(v1, v′1), . . . , (vn, v
′
n)}K.

Let ⊗x y be unde�ned for graphs lacking the handles indicated by the subscripts.

Further, let 0x y be the zero graph [x(1, . . . , k), y(1, . . . , k)], then for any graph

g which is x- and y-handled, de�ne the ⊗x y-closure as the smallest set such that

g ⊗x y = { 0x y} ∪ {g ⊗x y g
′ | g′ ∈ g ⊗x y}.

1 For the purposes of graph languages the speci�c order is irrelevant, as di�erent
orders only produce di�erent isomorphic graphs, and it is thus for those de�nitions
left unspeci�ed (a general order for all nodes can always be �xed by choosing any
Turing machine which recursively and uniquely enumerates all graphs, choosing its
output order as the ordering, but such a speci�c order is not necessary for this
paper). In a later construction where the exact graphs matter (to keep the same
relation de�ned on a constructed graph) we will state explicit internal orders.
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More formally ⊗x y is the operator in a graph combining monoid, concatenat-
ing graphs at sites indicated by the handles. The zero graph is then the identity,
and the closure is analogous to the Kleene closure, g ⊗x y being the set of all
graphs g ⊗x y · · · ⊗x y g ⊗x y 0x y for any number of repetitions of g, including zero.

A common case for compositions is that the handles connect to each node
at most once (i.e. if both sides have this property no nodes are merged). We
introduce additional notation for this more speci�c case.

De�nition 3. We may write g1 ⊗x y
∗ g2 (or equivalently g2 ⊗y x

∗g1) to denote g1 ⊗x y

g2 when the x-handle in g1 attaches to each node at most once. Let g1 ⊗x y
∗ ∗ g2

denote when both handles have this property.

This is a shorthand for stating the property on the graphs involved, in that
g ⊗x y
∗ ∗ h = g ⊗x y

∗ h = g ⊗x y h if g and h ful�ll the property. The ⊗x y
∗ case recurs in

grammar de�nitions and pumping lemmas, where the shorthand aids brevity.

De�nition 4. A graph replacement rule x over Σ consists of two handles and
two graphs such that lhs(x) ⊗x x̂ rhs(x) ∈ GΣ, where
� x and x̂ are the rule handle and rule cohandle, identi�ed by globally unique2

ranked symbols, and,
� lhs(x) and rhs(x) are the left-hand and right-hand side graphs, which are x-

and x̂-handled, respectively.

We write the rule as lhs(x) ⊗x x̂ rhs(x). We will often refer to such a rule simply
by its unique handle x.

For any graph g the rule l ⊗x x̂ r can be applied to produce h if there exists a

graph g′ such that g = l ⊗x x
∗ g′ and h = g′ ⊗x x̂ r. For a (set of) rule(s) e we write

g →e h to denote that h can be produced applying (some rule from) e to g.

De�nition 5. A graph grammar G is a tuple G = (N,Σ,R, S) where: (i) N is
a ranked alphabet of nonterminal labels; (ii) Σ is a ranked alphabet of terminal
labels; disjoint from N ; (iii) R is a �nite set of replacement rules over N ∪Σ;
and; (iv) S ∈ N is the initial nonterminal.

The language accepted by G is denoted L(G) ⊆ GΣ and contains g if and
only if there exists a graph g′, isomorphic to g, which can be produced by a
sequence of rule applications S()→R · · · →R g

′.

De�nition 6. A graph grammar G = (N,Σ,R, S) is a hyperedge replacement
(HR) grammar if all rules in R are of the form l ⊗x x̂

∗ ∗ r where the left hand side

l = A(1, . . . , k), x(1, . . . , k) for some A(k) ∈ N .

De�nition 7. A graph grammar G = (N,Σ,R, S) is a contextual hyperedge
replacement (CHR) grammar if there is a set cxlab(G) ⊆ {α ∈ Σ | rank(α) = 1}
(induced by the conditions on the rules below), the contextual labels, such that
each rule l ⊗x x̂

∗ ∗ r ∈ R has

2 We leave this somewhat informal, the purpose is to con�ate a rule and its handle
and not have to explicitly rule out symbols in other alphabets making it not be a
possible handle in some graph. Notably x, x̂ /∈ Σ.
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1. l = [x(1, . . . , n+m), α1(1), . . . , αn(n), A(n+1, . . . , n+m)] for some n,m ∈ N,
A(m) ∈ N , and α

(1)
1 , . . . , α

(1)
n ∈ cxlab(G), where α1(1), . . . , αn(n) are called

the contextual edges (the nodes, 1, . . . , n, are contextual nodes); and;
2. x̂(1, . . . , n + m), α1(1), . . . , αn(n) ∈ r̄, with the contextual label restriction:

only those n instances of an edge β(i) ∈ r̄ with 1 ≤ i ≤ n + m and β ∈
cxlab(G) exist (for other i there is no restriction).

More informally, the lhs l identi�es any number of contextual nodes, which
are nodes to which a terminal unary edge is attached, and one nonterminal
edge. Each node in l is attached to by precisely one edge. The rhs has the same
contextual edges, i.e. nodes labeled by contextual labels attached to the cohandle
such that applying the rule will always preserve contextual edges. To illustrate
the structure of a grammar, consider the example in Figure 1, which generates

1S ⊗∗ ∗ 1̂ A
w

3A ⊗∗ ∗ 3̂

w
A

2A ⊗∗ ∗ 2̂ 4

A

w
⊗∗ ∗ 4̂

A

w
a

w

w

w

w

aa
a

aa

Fig. 1. On the left are the four rules of a CHR grammar generating the set of all not
necessarily connected directed acyclic graphs, labeling all nodes w (i.e. each node has
a single incident unary edge labeled w(1)), and the directed edges a(2). The handles are
shown in shaded boxes (and elided from the operator). Rules 1 and 2 start and end the
derivation, respectively, while 3 creates a new node (attached to the A nonterminal),
and 4 adds an edge from some w-labeled node (i.e. any node) to the node attached to
the nonterminal A. The example graph on the right can be produced by this sequence of
rule applications: 1 , 3 , 4 , 4 , 3 , 4 , 4 , 3 , 4 , 2 . Intuitively the nonterminal A identi�es
the unique current �lowest� node, allowing edges to it from any other (due to the
injective condition, see Remark 3) to it.

the language of all directed acyclic digraphs. This example is further expanded
in Figure 4 on page 13.

The contextual label restriction only prevents adding labels from cxlab(G) to
�already existing� nodes, i.e. nodes connected to the cohandle (nodes 1 through
n+m as listed above). Its motivation requires some further discussion.

Remark 2. The contextual label restriction of De�nition 7 enforces that if a
unary label is used to identify a contextual node in some rule then no rule may
add that label to an existing node. That is, these labels must be created together
with the node, simulating node labels, mimicking the de�nition in [DH15].

Note that cxlab(G) = ∅ is possible if and only if G is a HR grammar (as it
is equivalent to no rule having a contextual node), so the CHR languages form
a strict superset of the HR languages as de�ned in the literature (e.g. [Hab92]),
with a small caveat in Remark 3. In Theorem 2 we will demonstrate that this
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restriction is necessary, that is, its inclusion changes the class of languages which
can be accepted by CHR grammars.

To keep things simple we will, where not otherwise explicitly stated, assume
that every (non-HR) CHR has cxlab(G) = {α ∈ Σ | rank(α) = 1}. In other
words, we monopolize the unary edges for the purpose of denoting node labels,
to avoid having the reader confuse what is a node label and what is not. There
are some graph languages which cannot be captured in this way, speci�cally
precisely those where there is no bound on the number of unary edges attached
to a single node (e.g. L = {ε, [a(1)], [a(1), a(1)], [a(1), a(1), a(1)], . . .}) but this
di�erence has no impact on any example or proof made here. Such languages
can be encoded in other ways, e.g. adding a �dummy� node to have a binary edge
act as a unary one, making the di�erence an unimportant technical detail. �

Remark 3. Note further that the g = l ⊗x x
∗ g′ lhs anchoring of De�nition 4 re-

quires that l is injectively embedded in g (by the little asterisk notation). This
agrees with CHR as de�ned in e.g. [DH15], where a replacement must identify
distinct nodes, but this is traditionally not required in HR. Requiring it in gen-
eral harmonizes the de�nitions without causing any loss of generality however,
as the only circumstance where a non-injective embedding of the lhs may be
necessary in a HR grammar is when a nonterminal attaching to the same node
more than once is generated by some rhs. A simple rewriting of the grammar can
be applied to remove such cases, by e.g. creating a new nonterminal to represent
that case while only attaching to the node once.

More importantly: all the pumping results of Section 5 are formulated such
that they hold whether this injective requirement is present or not. �

4 Formalism Motivations

In this section we motivate some of the choices in the formalisms. Notably the
e�ort to harmonize them causes some small di�erences from the literature which
may require some explanation.

Remark 4. Let us refer to the grammars de�ned in [DH15] as DHM-CHR gram-
mars (using the author initials from the formative [DHM11], though the very
original paper is by �HM� [HM10]). Setting the cosmetic di�erence of node labels
aside (i.e. monopolizing unary edges to represent labels here) we can de�ne DHM-
CHR by modifying De�nition 7 to have l = [x(1, . . . , n+m), α1(1), . . . , αn(n+
m), A(n+ 1, . . . , n+m)] in item 1, and require all nodes on both lhs and rhs to
have a label. We adopt CHR to harmonize better with HR grammars.

This di�erence does not cause a di�erence in the languages which may be
represented, as the labels of the attached nodes in DHM-CHR can be encoded in
the nonterminal symbol in CHR. Such a construction may cause an exponential
blowup in the number of nonterminals, but the number of rules remains the
same, as only the labelings which occur as literal left hand sides among the rules
are useful. As usual no grammar can have more useful nonterminals than it has
rules (i.e. there is no need to create a nonterminal encoding for all sets of node
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labels, if those sets do not exist as a left-hand side of some rule) the grammar
only grows linearly. However, in the other direction, there are some languages
where HR (and CHR) is exponentially more succinct than DHM-CHR. �
Theorem 1. There exists a family of graph languages L1, L2, . . . such that the
smallest HR (and CHR) grammar accepting Lk is of size O(k), while the smallest
DHM-CHR grammar accepting Lk is of size Ω(2k).

Proof. We demonstrate this by, for any k ∈ N, constructing a language Lk
ful�lling these conditions. For any n let gk,n be the n × k grid graph, i.e. there
are kn nodes on a grid, identifying the nodes with their coordinates node (i, j) has
outgoing edges; x((i, j), (i+1, j)) when i < n; and; y((i, j), (i, j+1)) when j < k.
De�ne flab : GΣ → 2GΣ by letting flab(g) contain every graph which can be
produced by labeling the nodes in g with either u or v (i.e. flab([x(1, 2), y(1, 3)]) =
{[x(1, 2), y(1, 3), u(1), u(2), u(3))], [x(1, 2), y(1, 3), u(1), u(2), v(3)], . . .}).

Then taking Lk =
⋃
n∈N flab(gk,n) ful�lls the conditions of the theorem,

containing graphs of the form shown in Figure 2. This language can, for any
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Fig. 2. Example graph from the language L4 as described in Theorem 1, with the x
and y labels on the horizontal and vertical binary edges elided. The u and v labels are
in actuality unary edges attached to the nodes, here shown as node labels.

k, be captured by a HR grammar with no more than six rules (the main rule
generating one column of the grid in each step, attaching to each new node a
nonterminal which nondeterministically generates either a u- or v-labeled unary
edge). This graph language is lifted from Chapter 5 of [Hab92] (with the addition
of the arbitrary node labels), where it is by a pumping argument demonstrated
that a HR grammar accepting this language must repeatedly (as n grows) use
a rule replacing a nonterminal which is connected to at least k nodes (i.e. the
column-wise generation is necessary for arbitrary n). A DHM-CHR grammar
G capturing Lk cannot usefully use the ability to attach edges to contextual
nodes (once three or more nodes are generated there is no way to correctly
control where the edge goes), so it too must generate the graph by repeatedly
replacing a nonterminal connected to at least k nodes. However, as the nodes
are arbitrarily labeled a simple adversarial argument (assigning u and v labels
to sentential forms) dictates that G must have Ω(2k) rules to account for the
possible labels on the left hand sides. ut

Next we demonstrate that the contextual label restriction in CHR is necessary
to generate a class of languages comparable to those captured by DHM-CHR.
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Theorem 2. Let CHR+ be grammars de�ned by modifying De�nition 7 to re-
move the contextual label restriction. There then exists a CHR+ grammar G such
that there exists no CHR grammar G′ that has L(G′) = L(G).

Proof. We proceed by constructing such aG, demonstrating that noG′ accepting
L(G) exists due to the necessary structure of the derivation. De�ne G with the
rules: (i) [S(), x()] ⊗x x̂

∗ ∗ [x̂(), A(1)]; (ii) [A(1), y(1)] ⊗y ŷ
∗ ∗ [ŷ(1), A(1), u(2), a(1, 2)];

(iii) [A(1), u(2), u(3), z(1, 2, 3)] ⊗z ẑ
∗ ∗ [ẑ(1, 2, 3), A(1), u(2), u(3), a(2, 3)]; and; (iv)

[A(1), τ(1)] ⊗τ τ̂
∗ ∗ [τ̂(1), u(1)]. That is, L(G) contains the graphs illustrated in Fig-

ure 3, consisting of a distinguished (�node 1�) node with a single outgoing edge
to each other node, and those other nodes form an arbitrary digraph. All nodes
are labeled u and all (binary) edges labeled a.

Fig. 3. Three examples of graphs from the language L(G) from the proof of Theorem 2
(opting not to draw labels, self-loops, or multiple instances of the same edge). The nodes
are all labeled u, the edges a. The marked node is �node 1�, the �rst node created by
the application of the rule [S(), x()] ⊗x x̂

∗ ∗ [x̂(), A(1)].

No CHR G′ accepting L(G) exists, since the �arbitrary digraph� part cannot
be created without repeatedly applying contextual rules (see e.g. the Connectiv-
ity Theorem of [Hab92], which precludes arbitrarily densely connected graphs).
However, it follows that �node 1� cannot be created before this arbitrary number
of contextual edge additions, as it too is labeled u, so there is no way to avoid
the derivation being able to add incoming edges to �node 1�, which brings us
outside the language. On the other hand, �node 1� also cannot be created last,
as the edges to the unbounded number of other nodes would then need to be
added, meaning no lhs is su�ciently large to systematically identify them all for
any su�ciently large graph. Adding those edges by contextual rules again risks
failing to create some of the needed edges and creating multiples of others. ut

5 Derivation Structures and Pumping Lemmas

One of the main goals of the framework developed in the previous two sections
is to be able to discuss structural properties of various formalisms (HR and
CHR being considered here, but others to be added in the future). This kind of
comparison is important, as the formalisms are powerful enough that it is often
not intuitively obvious whether a certain language can be captured within them.

Speci�cally we will here consider Ogden-style lemmas, for example (adapt-
ing the original lemma [Ogd68] for context-free to regular languages): for every
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regular string language L there exists a constant k such that for every string
w ∈ L with at least k string positions marked there exists strings v1, v2, v3 such
that: (i) w = v1v2v3; (ii) v1(v2)iv3 ∈ L for all i ∈ N (i.e. v2 can be repeated
any number of times while remaining in the language); (iii) v2 contains at least
one of the marked positions; and (iv) v2v3 contains at most k of the marked
positions. However, where marking string positions is clear enough to be talked
about quire informally more careful notation is necessary in the graph case (i.e.
resolving symmetries due to automorphisms), and to make the results usefully
comparable (e.g. yielding some insight on the power added by contextual rules)
the notation should be kept as consistent as possible between formalisms.

Pumping and Habel-Kreowski's lemma. First let us de�ne the idea of �pumping�
independent of the formalism.

De�nition 8. For any L ⊆ GΣ and g ∈ L we say that g = g1 ⊗x u g2 ⊗v y g3, for

any graphs g1, g2, and g3, and any x(k), y(k) /∈ Σ, is a pumpable decomposition
of g in L if and only if

g1 ⊗x u
∗ (g2 ⊗u v

∗ )
⊗v y
∗ g3 ⊆ L.

Let us recall Habel-Kreowski's pumping lemma [HK87,Hab92] phrased using
the notation of this paper (making it di�er slightly in presentation as discussed
in Remark 1, but adapting the proof is a simple matter of changing external
nodes into handles, replacing the graph embedding with our operator).

Theorem 3 (Habel-Kreowski's lemma). For every HR language L there
exists constants k and n (depending only on L) such that every g ∈ L with
|g| ≥ n has a pumpable decomposition g = g1 ⊗x u

∗ g2 ⊗v y
∗ g3 with

1. |g2 ⊗v y
∗ g3| ≤ n, and

2. |g2| > | 0u v| (i.e. |g2| > k + 2, it creates at least one node or edge).

Marking graphs and derivation trees. While Habel-Kreowski's lemma is very
powerful it can, using largely existing literature, be extended into an Ogden-
style lemma, and with some care this can be extended into CHR. Let us �rst
de�ne marking graphs and recall an existing lemma.

De�nition 9. For an alphabet Σ de�ne the marked alphabet mark(Σ) = Σ ]
{mark(α)(k) | α(k) ∈ Σ} ] {mark(⊥)(1)}. An edge labeled mark(α) for α ∈ Σ, or
a node with exactly one incident edge labeled mark(⊥), is said to be marked. Let
unmark(g) be the graph resulting when removing all marks from g, i.e. changing
each label mark(α) into α, and deleting the mark(⊥)(1) edge from marked nodes
(we leave unmark unde�ned if some node has more than one incident edge marked
mark(⊥)(1)). Let mark(L) = {g ∈ Gmark(Σ) | unmark(g) ∈ L} for any graph
language L over Σ.

Marks not being de�ned for a node being marked multiple times is a small
technicality that simpli�es the statement of pumping lemmas going forward, as
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it makes it easy to avoid cases where the pumping would otherwise just add
marking edges, as opposed to �real� edges. Next we re�ne the idea of derivations
into trees (for HR only).

Let us de�ne a weak form of derivation trees, which will structurally cor-
respond to tree decompositions for HR graph languages, as de�ned in [Lau90].
These will only usefully apply to the HR grammars here, and to simplify them
we assume a normal form for the grammars.

De�nition 10. A simple HR grammar G = (N,Σ,R, S) is such that for all
rules l ⊗x x̂ r ∈ R

1. each A ∈ N occurs at most once in r, and,
2. r either contains at most one node not connected to the cohandle, or at most

one Σ-labeled edge, i.e. (|ṙ|−rank(x))+ |{α(v1, . . . , vk) ∈ r̄ | α(k) ∈ Σ}| ≤ 1.
We say that this is the node or edge created by x, denoted created(x) ∈ ṙ∪ r̄
(which is not de�ned for all x as r is permitted to not create a node or edge).

A CHR grammar G is simple if it ful�lls condition 1 alone.

We may assume simple (C)HR grammars w.l.o.g. as any (C)HR grammar can
be made simple (with only a constant blowup in the overall size of the grammar)
using the usual rewriting techniques: creating additional nonterminals under
unique names as needed, and, for HR, splitting rules with multiple nodes and/or
edges on the rhs into a chain of rules (enforced by new unique nonterminals).

De�nition 11. For a simple HR grammar G = (N,Σ,R, S) a derivation tree t,
for a graph g, is a tree (a digraph where all but one node, the root, has precisely
one incoming edge) over {r(2) | r ∈ R} (that is, the directed edges are labeled by
rules from R), such that g = Ψ(t), where Ψ is a tree-to-graph mapping de�ned
as follows.

For every internal node i with incident edges x(p, i), x1(i, j1), . . . , xn(i, jn) let
Ψt(i) = r′ ⊗x1 x̂1

Ψt(i1) · · · ⊗xn x̂′n
Ψt(in) where

1. r′ is such that rhs(x) = r′ ⊗x1 x̂1
lhs(x1) · · · ⊗xn x̂n lhs(xn), which is unique as

each nonterminal occurs at most once in rhs(x) (as G is simple), and,
2. r′ contains no nonterminals. A tree where this does not hold is called a

derivation tree fragment, Ψ is de�ned the same way for such fragments.

The root node p has precisely one incident edge, let it be x(p, j), and let Ψ(t)
denote Ψt(j) − x̂. We call Ψ(t) the graph derived from A by t, where A ∈ N
is the nonterminal in lhs(x). Let deriv(G) denote the set of all derivation trees
which derive a graph from the initial nonterminal S.

Finally, we extend Ψt to marked derivation trees by treating the label mark(x)
as x if created(x) is unde�ned, and by replacing created(x) with mark(created(x))
in the rhs of x otherwise (for example, if t′ is t with all edges marked then Ψ(t′)
is the graph Ψ(t) with all nodes and edges marked).

Lemma 1. For all HR grammars G we have L(G) = {Ψ(t) | t ∈ deriv(G)}.
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Proof. This can largely be taken as a consequence of the de�nitions with a
reference to [Hab92] for derivation trees, and [Lau90] for a deeper look at tree
decompositions of HR languages. As we will operate on derivation trees in later
proofs as well however let us spell out the details.

Let G = (N,Σ,R, S) be a simple HR grammar, and take any derivation
sequence g1 →r1 · · · →rn gn for G, such that g1 = S() and gn ∈ L(G). Let
σ : {1, . . . , n} → {0, 1, . . . , n} be a mapping such that the derivation step →ri

replaces a nonterminal added by derivation step →rσ(i) (symmetries in the sen-
tential graphs means that σ is not necessarily unique, but any σ consistent with
the derivation can be chosen), with σ(1) = 0. More strictly stated σ is such that
marking some nonterminal on the rhs in the →rσ(i) and replacing the marked
nonterminal in →ri does not otherwise change the derivation.

Then construct the tree t with nodes 0, 1, . . . , n and the edges {ri(i, σ(i)) |
1 ≤ i ≤ n}. Now t ∈ deriv(G) and Ψ(t) = gn, which can be seen by induction
on the length of the derivation: for each 1 ≤ i ≤ n the derivation tree fragment
fragment t′ induced by deleting the nodes {i + 1, . . . , n} and all their incident
edges has Ψ(t′) = gi. ut

Ogden's lemma for derivation trees and graph grammars. We now have all the
pieces necessarily to easily pluck the Ogden-style lemma from [Kuh08] and reap-
ply it to give us a similar lemma for HR grammars.

Theorem 4 (Ogden's for Regular Tree Languages (by Kuhlmann)). For
every HR grammar G there exists a constant p such that every t ∈ mark(deriv(G))
(by virtue of being a regular tree language [Lau90]) with at least p marked edges
has a pumpable decomposition t = t1 ⊗x u

∗ ∗ t2 ⊗v y
∗ ∗ t3 such that

1. x,u,v and y are all rank 1,
2. at least one edge in t2 is marked,
3. t2 ⊗v y

∗ ∗ t3 contains at most p marked edges.

Note that the marked decomposition in mark(deriv(G)) corresponds to an un-
marked pumpable decomposition in deriv(G).

With this we are ready to state an Ogden-style pumping lemma for HR.

Theorem 5. For every HR language L there exists a constant p ∈ N such that
every g ∈ mark(L) which has at least p marked nodes and edges has a pumpable
decomposition g = g1 ⊗x u

∗ g2 ⊗v y
∗ g3 where

1. x, u, v, and y have rank at most p,
2. g2 has at least one edge or node marked, and,
3. g2 ⊗v y g3 contains at most p marked nodes and edges.

Proof. Note that if there is an edge labeled mark(⊥) in g2 then the node it
is attached to is �created� in g2, in that it is not attached to both the u- and
v-handle. This must be the case as otherwise pumping g2 would add multiple
mark(⊥) labels to the same node, which De�nition 9 disallows. In consequence
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pumping g2 does add additional nodes and/or edges to the resulting graph, even
viewed under unmark.

Let G = (N,Σ,R, S) be a simple HR grammar accepting L, which exists by
de�nition. Let pT be the pumping constant for deriv(G) indicated by Theorem 4,
and set p = max(pT ,maxr∈R rank(r)).

Then there exists some t ∈ mark(deriv(G)) such that Ψ(t) = g, and t will have
at least p marked edges. This is so since there by de�nition is a tree t′ ∈ deriv(G)
with unmark(g) = Ψ(t′), and then t with unmark(t) = t′ exists. Since G is simple
each edge in t is responsible for creating at most one node or edge in the �nal
graph, so each edge also introduces at most one mark, which means generating
the p marks in g requires at least p (which is at least as large as pT ) marked
edges in t. So, simply apply Theorem 4 to t to get the pumpable decomposition
t1 ⊗x̃ ũ
∗ ∗ t2 ⊗ṽ ỹ

∗ ∗ t3, and all that remains is to show that the pumpable decomposition

g = g1 ⊗x u
∗ g2 ⊗v y

∗ g3 this induces has the properties indicated by the lemma.

This is the case, as Ψ(t1) and Ψ(t1 ⊗x̃ ṽ
∗ ∗ t2) (note that these are derivation tree

fragments) will contain precisely one nonterminal for some rank k ≤ p, and as
t2 contains at least one mark, and t2 ⊗ṽ ỹ

∗ ∗ t3 at most p marks, so will g2, and

g2 ⊗v y
∗ ∗ g3, respectively. ut

The statement of this kind of pumping lemma would often use a separate con-
stant bounding the rank of the decomposition (i.e. in part 1 of the statement
above), as it is not directly related to the pumping constant p itself. The practical
usefulness of this separation is limited however, and we opt to assume a single
constant which is su�ciently large (taking the maximum of the two constants).

Extending pumping to CHR. While the pumping lemma for HR is in itself use-
ful, our actual goal is an analogous lemma for CHR. We will achieve this by
characterizing all CHR languages in terms of HR grammars under an operator
responsible for introducing contextual edges. While we will need to augment this
approach further, let us launch straight to it.

De�nition 12. For a simple CHR grammar G = (N,Σ,R, S) construct the

HR grammar Gτ = (N,Σ ] {⊥(1)
α | α ∈ cxlab(G)}, Rτ , S) by for each rule r ∈ R

having the rule rτ ∈ R′, where
� assuming lhs(r) is of the form (renaming nodes if necessary) [r(1, . . . , n +
m), A(1, . . . , n), α1(n+ 1), . . . , αm(n+m)] construct lhs(rτ ) to be the graph
[rτ (1, . . . , n), A(1, . . . , n)], and,

� construct rhs(rτ ) by (renaming nodes if necessary) taking rhs(r) and con-
structing rhs(rτ ) by replacing the edges r̂(1, . . . , n+m), α1(n+1), . . . , αm(n+
m) with the edges r̂τ (1, . . . , n),⊥α1

(n+ 1), . . . ,⊥αm(n+m).

Clearly Gτ can, when needed, be made simple by applying the same argument as
made in connection with De�nition 10.

Let PG = {[xα(1, 2), α(1),⊥α(2)] ⊗xα x̂α [x̂α(1, 1), α(1)] | α ∈ cxlab(G)} (note
that these rules are neither HR nor CHR, as the rhs handle connects to the same
node twice, causing a merging behavior) and de�ne the operator τG : GΣ′ → 2GΣ

by having g′ ∈ τG(g) if and only if g →PG · · · →PG g
′, with g′ ∈ GΣ.
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That is, where G would attach some edges to a contextual node α(i) in
Gτ a �placeholder� node ⊥α(j) is instead created. τG then merges such place-
holders into candidate contextual nodes, e.g. τG([u(1), a(1, 2), a(2, 3),⊥u(3)]) =
{[u(1), a(1, 2), a(2, 1)]}. See Figure 4 for an example of the relationship between
the derivation tree, the graph it produces, and a graph that results under τG.

(a). (b). (c). (d).
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Fig. 4. (a) Shows the two important rules (rule 4 is the only one actually changed)
of the HR grammar resulting when applying De�nition 12 to the CHR grammar of
Figure 1. (b) A derivation tree t, in this case unary, in the indicated HR grammar. (c)
The graph Ψ(t) produced by the derivation. (d) One of the graphs in τG(Ψ(t)) (i.e. it
is produced by merging ⊥w-labeled nodes into w-labeled ones), in fact the same graph
that was the example in Figure 1, demonstrating the relationship established. Note
that marking one edge in (b) produces a marked node (if a 3 -labeled edge) or edge (if
a 4 -labeled edge) in (c), and such a mark in turn turns into a mark in (d) under τG.

We will go on to argue that for every CHR grammar G we will have g ∈ L(G)
only if there exists some g′ ∈ L(Gτ ) with g ∈ τG(g′), simulating contextual nodes
by instead creating ⊥-labeled placeholder nodes, which the τG operator merges
into a node with the correct label. The reverse does not hold however, as not
every way of merging the nodes is valid.

Where Figure 4 also indirectly illustrates a case where the combination of
Gτ and τG produces a loosening of the language (i.e. the graph in (d) is only
one of many possible), another fact from [DH15] supports the reasoning behind
the construction.

De�nition 13 (From [DH15]). A CHR grammar G = (N,Σ,R, S) is context-
safe if all graphs g ∈ GΣ]N which can be constructed by a sequence of rule
applications S() →R · · · →R g necessarily have a sequence of rule applications
g →R · · · →R g

′ such that g′ ∈ GΣ.
That is, G is context-safe if a derivation in G cannot get �stuck� due to missing
contextual nodes (i.e. for each rule x in G if the nonterminal in lhs(x) exists in
a sentential graph then the contextual nodes in the lhs necessarily also exist).

Remark 5. In [DH15] it is shown that every CHR grammar G can be put on a
normal form with this property, and on such grammars we consequently have
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the property that all g ∈ L(Gτ ) will have τG(g) ∩ L(G) 6= ∅. This is largely by
de�nition, context-safety meaning that there is at least one way for τG to join
up the nodes which is consistent with the CHR derivation. Note that the DAG
grammar sketched above is context-safe, so the issue that not all the graphs
produced by τG necessarily correspond to valid CHR derivations remains. This
is not necessary for any result in this paper, but means that all graphs g ∈ Gτ
can be pumped and will always produce at least some graph in G under τG. �

Lemma 2. For all CHR grammars G it holds that L(G) ⊆ ∪g∈L(Gτ )τ(g).

Proof. Firstly note that for HR rules R and any graphs g (on which τG is de-
�ned), g′ and g′′ we have τG(τG(g) → g′) ⊆ τG(g →R g′′) (in a slight abuse of
notation we write f(g →R g

′) to mean {f(g′) | g → g′}). This is the case as HR
rule applications preserve contextual labels (replacing only nonterminals), so if
τG(g) merges ⊥α(i) into α(j) then τG(g →R g′′) can do the same (the reverse
does not hold in general as τG(g →R g

′′) can merge a node ⊥α(i) from g into a
node α(j) from g′′, which the other case cannot).

Now consider a derivation g1 →r1 · · · →rn gn+1 in G, where g1 = S() and
gn+1 ∈ L(G). For each ri let r

′
i be the corresponding rule in Gτ (as constructed

in De�nition 12), and then we show that gn+1 ∈ τG(g) for a g ∈ L(Gτ ) by in-
ductively showing that gi ∈ τG(· · · τG(τG(g′1)→r′1 g

′
2) · · · →r′i−1

g′i) for sentential
graphs g′1, . . . , g

′
i for Gτ , equivalent to those in G. For the base case: g1 = τG(g′1),

as both are the initial nonterminal S() (recall that G and Gτ have the same set
of nonterminals); and; for inductive step i: the lhs ri of G will apply to some
(possibly zero) contextual edges, where in the equivalent step in the Gτ deriva-
tion the equivalent ⊥-labeled nodes are instead introduced on the rhs, and the
immediate τG application can merge those into the same nodes which ri in G
took as contextual (again note that τG may be able to merge in other ways, but
we only prove that one of the ways is equivalent to the derivation in G). Noting
that all the τG applications can be collapsed up into a single top-level one (as
shown in the �rst part) completes the proof. ut

Theorem 6. For every CHR language L ⊆ GΣ there exists a constant p ∈ N
such that every g ∈ mark(L) which has at least p marked nodes and edges there
are graphs g1, g2, g3, with (nodes renamed such that) i < j for all i ∈ ġ1 and
j ∈ ġ2, and two one-to-many (i.e. describing the inverse of a function) relations
R1 ⊆ ġ1 × ġ2 and R2 ⊆ (ġ1 ∪ ġ2)× ġ3, such that

1. x, u, v, and y have rank at most p,
2. g2 has at least one edge or node which is marked,
3. g2 ⊗v y

∗ g3 contains at most p marked nodes and edges,

4. g = ((g1 ⊗x u
∗ g2)JR1K ⊗v y

∗ g3)JR2K, and,
5. (G ⊗v y

∗g3)JR2K ⊆ mark(L), where G is the smallest language such that g1 ∈ G
and (G ⊗u v

∗ g2)JR1K ⊆ G.
Proof. The statement of this theorem appears somewhat complex, but it is in
practice a very direct consequence of pumping Gτ .
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Note that if there is an edge labeled mark(⊥)(1) in g2 then the node it is
attached to is �created� in g2, in that it is neither attached to both the u- and
v-handle, nor is it in R1 (which gets merged into a node in g1). This must be
case as otherwise pumping g2 twice would add two mark(⊥) labels to the same
node, which De�nition 9 disallows. From this it follows that pumping g2 does
indeed add new copies of a marked node or edge to the resulting graph.

By de�nition there exists a CHR grammar G accepting L, apply Lemma 2
to �nd the g′ ∈ mark(Gτ ) which has g ∈ τG(g′), apply Theorem 5 (thus
choosing p as indicated by that theorem) to get a pumpable decomposition
g′ = g′1 ⊗x u

∗ g′2 ⊗v y
∗ g′3, then construct g1, g2, g3, R1 and R2 by, following the

steps of Lemma 2, merging any pairs of nodes which are in the same component
graph, and recording in R1 the nodes which should be merged from g2 into g1,
and in R2 the nodes which should be merged from g3 into g1 and g2 (deleting the
⊥-labeled edges in the process). Then the part of the derivation corresponding
to g2 can be repeated arbitrarily many (including zero) times, each time apply-
ing R1 (note that the way De�nition 1 chooses a representative of the merged
nodes is abused to retain the node identity from g1 in G) to merge new copies
of the same nodes into the ones in g1 indicated by the relation. This procedure
necessarily produces new graphs in L, amounting to repeating derivation steps
choosing the same contextual nodes as in the original derivation. ut
Example 1. Numbering the nodes of the graph from Figure 4(d). top to bottom:
w(1), w(2), w(3), w(4), a(1, 2), a(1, 2), a(1, 3), a(2, 3), a(2, 4), then, marking node
3, Theorem 6 is ful�lled by the following decomposition with rank-0 handles
g1 = [w(1), w(2), a(1, 2), a(1, 2), x()], g2 = [u(), w(3), a(1′, 3), a(2′, 3), v()], g3 =
[y(), w(4), a(2′, 4)] with the relations R1 = {(1, 1′), (2, 2′)} and R2 = {(2, 2′)}.
See Figure 5 for an illustration of the graph resulting from repeating g2 four
times. Note that the handles are rank zero as all edges are contextual, in general
cases they handle the �Habel-Kreowski-style� HR part of the pumping. �
Example 2. Many conclusions can be drawn by such a pumping result, to illus-
trate let us note two simple examples.

w w w

w

w
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a
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a
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g1 g2 g2 g2 g2 g3

Fig. 5. An illustration of the result of pumping the decomposition of Example 1 four
times. To the left of the �rst dashed boundary is the part corresponding to g1 (i.e.
node 1 and 2 and some edges), the top eight edges crossing that dashed boundary are
created by R1 collapsing 1′ and 2′ from each copy of g2 into node 1 and 2 in g1. The
bottom edge is created by the application of R2.
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The language of complete graphs is not in CHR: marking a node in any such
graph, and applying Theorem 6, gives a way to pump the graph which grows
the number of nodes while growing the number of edges only linearly

For every CHR language L either: (i) every g ∈ mark(L) can be pumped with
Theorem 5 (i.e. it can be pumped as a HR grammar); or; (ii) the node degrees
in L are unbounded, i.e. for every k ∈ N there exists a graph g ∈ L which has at
least one node of degree ≥ k. This can be seen as either R1 can be made empty,
or it add edges to some node on each iteration of the pumping procedure. �

6 Conclusions and Future Work

In summary we have introduced and to some extent motivated de�nitions and
notation suitable for discussing HR and CHR grammars in the same frame-
work, and have applied it to discuss pumping properties of these formalisms in
a uni�ed way. This is only an initial look at the work planned however, with
several loose threads to be considered. Notably the framework is intended to
cover some further classes of formalisms, such as the regular tree folding mech-
anism from [Bjö18]. The pumping result for CHR is merely an early example,
and should be re�ned, e.g.: making the Gτ and τG constructions precise); and
considering the frequent case where the R1 relation should be allowed to attach
edges to �newer� copies of g2 rather than always to g1.
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Abstract. Predictive shift-reduce (PSR) parsing for hyperedge replace-
ment (HR) grammars is very efficient, but restricted to a subclass of un-
ambiguous HR grammars. To overcome this restriction, we have recently
extended PSR parsing to generalized PSR (GPSR) parsing along the
lines of Tomita’s generalized LR parsing. Unfortunately, GPSR parsers
turned out to be too inefficient without manual tuning. This paper pro-
poses to use memoization techniques to speed up GPSR parsers without
any need of manual tuning, and which has been realized within the graph
parser distiller Grappa. We present running time measurements for some
example languages; they show a significant speed up by some orders of
magnitude when parsing valid graphs. But memoization techniques do
not help when parsing invalid graphs or if all parses of an ambiguous
input graph shall be determined.

Keywords: hyperedge replacement grammar, graph parsing, parser generator

1 Introduction

In earlier work [4], we have devised predictive shift-reduce parsing (PSR), which
lifts D.E. Knuth’s LR string parsing [9] to graphs and runs in at most expected
linear time in the size of the input graph. However, parsing for graph grammars
based on hyperedge replacement (HR) is in general NP-hard, even for a par-
ticular grammar [6]. Therefore, PSR parsing is restricted to a subclass of HR
grammars, which particularly must be unambiguous. We have recently extended
PSR parsing to generalized PSR (GPSR) parsing [7], which can be applied to
every HR grammar.

GPSR parsing has been motivated by M. Tomita’s generalized LR (GLR)
parsing for strings [12]. The original GLR parsing algorithm by Tomita runs in
O(nk+1) time where n is the length of the input string and k the length of the
longest rule in the grammar, but J.R. Kipps improved it to O(n3) [8], which
is the same complexity as of a parser using the Cocke-Younger-Kasami (CYK)
algorithm [13].

GPSR parsing cannot be efficient in general because GPSR parsers can be
applied to every HR grammar. But our experiments [7] have shown that GPSR
parsers are even slower than simple graph parsers that extend the CYK algorithm
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to graphs [10,11]. Manual tuning of GPSR parsers by using language specific
strategies (see Sect. 4) helped to improve their efficiency, but even those tailored
parsers have not always been faster than the corresponding CYK parsers.

GPSR parsers identify parses of an input graph in a search process that may
run into dead ends. They are inefficient because they waste time in this process
and because they discard all information collected in these dead ends, even if
it could be used later. This paper proposes to use memoization techniques to
keep the information and to reuse it later. Reuse allows to skip long sequences
of parsing operations that would just recreate information that has already been
collected earlier.

GPSR parsing with memoization has been implemented in the graph-parser
distiller Grappa1. Experiments with generated parsers for different example
languages demonstrate that memoization substantially improves parsing speed.

The remainder of this paper is structured as follows. After recalling HR
grammars in Sect. 2, PSR parsing in Sect. 3, and GPSR parsing in Sect. 4, we
describe how memoization can speed up GPSR parsing in Sect. 5. We compare
its performance with plain GPSR parsing and with CYK parsing using three
example graph languages in Sect. 6: Sierpinski graphs, series-parallel graphs,
and structured flowcharts, where GPSR parsing with memoization substantially
improves plain GPSR parsing. Sect. 7 concludes the paper.

2 Graph Grammars Based on Hyperedge Replacement

Throughout the paper, we assume that X is a global, countably infinite supply
of nodes, and that Σ is a finite set of symbols that comes with an arity function
arity : Σ → N, and is partitioned into disjoint subsets N of nonterminals and
and T of terminals.

We represent hypergraphs as ordered sequences of edge literals, where each
literal represents an edge with its attached nodes. This is convenient as we shall
derive (and parse) the edges of a graph in a fixed order.

Definition 1 (Hypergraph). For a symbol a ∈ Σ and k = arity(a) pairwise
distinct nodes x1, . . . , xk ∈ X, a = ax1···xk represents a hyperedge that is labeled
with a and attached to x1, . . . , xk. EΣ denotes the set of hyperedges (over Σ).

A graph γ = 〈V, ϕ〉 over Σ consists of a finite set V ⊆ X of nodes and a
sequence ϕ = e1 · · · en ∈ E∗Σ of hyperedges such that all nodes in these literals
are in V . GΣ denotes the set of all graphs over Σ.

We say that two graphs γ = 〈V, ϕ〉 and γ′ = 〈V ′, ϕ′〉 are equivalent, written
γ ./ γ′, if V = V ′ and ϕ is a permutation of ϕ′.

In the following, we usually call hypergraphs just graphs and hyperedges just
edges. For a graph γ = 〈V, ϕ〉, we use the notation Vγ = V .

Note that graphs are sequences rather than multisets of literals, i.e., two
graphs 〈V, ϕ〉 and 〈V ′, ϕ′〉 with the same set of nodes, but with different se-
quences of literals are considered to differ, even if V = V ′ and ϕ′ is just a
1 Available under www.unibw.de/inf2/grappa.
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permutation of ϕ. However, such graphs are equivalent, denoted by the equiv-
alence relation ./. In contrast, “ordinary” graphs would rather be represented
using multisets of literals instead of sequences. The equivalence classes of graphs,
therefore, correspond to conventional graphs. The ordering of literals is techni-
cally convenient for the constructions in this paper. However, input graphs to be
parsed should of course be considered up to equivalence. Thus, we will make sure
that the developed parsers yield identical results on graphs g, g′ with g ./ g′.

An injective function % : X → X is called a renaming, and γ% denotes the
graph obtained by replacing all nodes in γ according to %. Although renamings
are, for technical simplicity, defined as functions on the whole ofX, only the finite
subset Vγ ⊆ X will be relevant. We define the “concatenation” of two graphs
γ = 〈V, ϕ〉, γ′ = 〈V ′, ϕ′〉 ∈ GΣ as γγ′ = 〈V ∪ V ′, ϕϕ′〉. If a graph γ = 〈V, ϕ〉 is
completely determined by its sequence ϕ of literals, i.e., if each node in V also
occurs in some literal in ϕ, we simply use ϕ as a shorthand for γ. In particular,
a literal a = ax1···xk ∈ EΣ is identified with the graph 〈{x1, . . . , xk},a〉.

A hyperedge replacement rule r = (A→ α) (rule for short) has a nonterminal
edge A ∈ EN as its left-hand side, and a graph α ∈ GΣ with VA ⊆ Vα as its right-
hand side.

Consider a graph γ = βĀβ̄ ∈ GΣ with a nonterminal edge Ā and a rule
r = (A → α). A renaming µ : X → X is a match (of r in γ) if Aµ = Ā and
if Vγ ∩ Vαµ ⊆ VAµ .2 A match µ of r derives γ to the graph γ′ = βαµβ̄. This is
denoted as γ⇒r,µ γ

′. If R is a finite set of rules, we write γ ⇒R γ′ if γ⇒r,µ γ
′

for some match µ of some rule r ∈ R.
Definition 2 (HR Grammar). A hyperedge replacement grammar Γ =
(Σ, T ,R, Z) (HR grammar for short) consists of symbols Σ with terminals
T ⊆ Σ as assumed above, a finite set R of rules, and a start graph Z = Zε with
Z ∈ N of arity 0. Γ generates the language L(Γ ) = {g ∈ GT | Z⇒∗R g}.

In the following, we simply write⇒ and⇒∗ because the rule setR in question
will always be clear from the context.
Example 1 (A HR Grammar for Sierpinski Triangles). The following rules

Zε→
0

Dxyz Dxyz→
1

Dxuw Duyv Dwvz Dxyz→
2

txyz

generate Sierpinski triangles as graphs where triangles are represented by ternary
edges of type t. This grammar is in fact a slightly modified version of [6, p. 189]
where edges of triangles are represented by binary edges.

Fig. 1 shows a derivation with graphs as diagrams, in particular with t-edges
drawn as triangles. This corresponds to the following derivation. Underlines in-
dicate rewritten nonterminal edges:

Zε⇒
0

Dahl⇒
1

DabcDbhjDcjl⇒
1

DabcDbdeDdhiDeijDcjl

⇒
1

DabcDbdeDdhiDeijDcfgDfjkDgkl 7⇒
2

tabctbdetdhiteijtcfgtfjktgkl

2 I.e., a match µ makes sure that the nodes of αµ that do not occur in Ā = Aµ do
not collide with the other nodes in γ.
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Fig. 1. A derivation of the graph tabctbdetdhiteijtcfgtfjktgkl. Nodes are drawn as circles
with their names inscribed, nonterminal edges as boxes or triangles around their label,
with lines to their attached nodes, and terminal edges as triangles visiting their attached
nodes counter-clockwise, starting at the top corner. The numbers inside the terminal
triangles are used later to refer to the corresponding terminal edges.

3 Predictive Shift-Reduce Parsing

The article [4] gives detailed definitions and correctness proofs for PSR parsing.
Here we recall the concepts only so far that we can describe its generalization in
the next section.

A PSR parser attempts to construct a derivation by reading the edges of a
given input graph one after the other.3 However, the parser must not assume
that the edges of the input graph come in the same order as in a derivation. E.g.,
when constructing the derivation in Fig. 1, it must also accept an input graph
tabctbdetcfgtdhiteijtfjktgkl where the edges are permuted.

Before parsing starts, a procedure described in [3, Sect. 4] analyzes the gram-
mar for the unique start node property, by computing the possible incidences of
all nodes created by a grammar. The unique start nodes have to be matched
by some nodes in the right-hand side of the start rule of the grammar, thus
determining where parsing begins. For our example, the procedure detects that
every Sierpinski graph has a unique topmost node. That is a node with a single
t-edge attached where the node is the first in the edge’s attachments. The node
3 We silently assume that input graphs do not have isolated nodes. This is no real
restriction as one can add special edges to such nodes.
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¯ = Ddxy/qdxye5

Fig. 2. The characteristic finite automaton for the HR grammar of Sierpinski triangles.

x in the start rule Zε → Dxyz must be bound to the topmost node of any input
graph.4 If the input graph has no topmost node, or more than one, it cannot be
a Sierpinski graph, so that parsing fails immediately.

A PSR parser is a push-down automaton that is controlled by a characteristic
finite automaton (CFA). The stack of the PSR parser consists of states of the
CFA. The parser makes sure that the sequence of states on its stack always
describes a valid walk through its CFA.

Fig. 2 shows the CFA for our example of Sierpinski graphs. It has been gen-
erated by the graph parser distiller Grappa1, using the constructions described
in [4], and consists of eight states. Each state has a unique state number and a
number of parameters, which are written as subscript and superscript, respec-
tively. Parameters are placeholders for nodes of the input graph, which have
already been read by the parser. The initial state is qa0 . Its parameter a is bound
4 The other two nodes of the start rule, in fact, can be uniquely identified, too, which
could be used as a second and a third start node bound to y and z, respectively.
However, the corresponding CFA is too complicated for a presentation in this paper.
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to the start node of the input graph, i.e., the topmost node, when parsing starts.
Transitions between states are labeled by pairs with a slash as a separator. The
first part of a label is the trigger of the transition whereas the second part of a
label determines the parameters of the target state of the transition. Note that
the latter is in fact the target state of the transition with its parameters set
to the values used in the label. The trigger is a placeholder for an edge whose
attached nodes are either parameters of the source state of the transition, or
placeholders x or y, which stand for nodes of the input graph that have not
yet been read by the parser. Note that some transitions have multiple labels.
This is in fact a shortcut for different transitions, each with one of these labels.
We are going to describe the meaning of labels in the following and shall use
tabctbdetcfgtdhiteijtfjktgkl as an input graph.

A PSR parser starts with a stack that contains the input state with its
parameters bound to the start nodes. In our example this is qa0 with a being
bound to node a, written as qa0 . We call such a state with all its parameters being
bound to input graph nodes a concrete state. The next action of the parser is
always determined by the topmost state on the stack, which is concrete, and by
consulting the corresponding state in the CFA. Three different types of actions
are distinguished:

A shift action reads a yet unread edge of the input graph. This corresponds
to an outgoing transition with a terminal trigger. The trigger fits if the input
graph contains an unread edge labeled with the trigger label and being attached
to input graph nodes as specified by the node placeholders of the trigger. If the
topmost state is qa0 , there is an outgoing transition to state qabc2 with a trigger
taxy. Parameter a is bound to a, and its second and third attached nodes must
be unread nodes, indicated by x and y. Edge tabc fits this trigger because tabc
and b as well as c are yet unread. The shift action marks this edge as well as its
attached nodes as read, and pushes the target state of the transition on the stack.
The second part of the label determines the binding of this state. In our example,
this is qaxy2 where a, x, y are bound to a, b, c, respectively. As a consequence, the
stack will now contain qa0 and qabc2 with the latter being the new topmost state.

A reduce action is performed when the top state of the stack corresponds
to the right-hand side of a rule which is then replaced by the corresponding left-
hand side. The parser recognizes this situation by inspecting just the topmost
state of the stack; states that allow a reduce action are marked accordingly. In
Fig. 2, these states are drawn with a thick border and additionally labeled by r0,
r1, and r2 together with a placeholder for a nonterminal edge. For instance, qabc2
is labeled by r2:Dabc where r2 means a reduction using rule 2 of the grammar.
The reduce action in fact consists of three consecutive steps. In the first step, the
parser creates a nonterminal as indicated by the state label. In our example, it
is r2:Dabc. With a topmost state qabc2 , a, b, c are bound to a, b, c, which produces
a nonterminal Dabc. In the second step of the reduce action, the parser pops as
many states off the stack as this rule’s right-hand side contains edges, i.e., just
one state for rule 2. For instance, when starting with stack contents qa0qabc2 , qabc2
is popped off, yielding a stack just containing qa0 . The third step is called a goto
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step. It inspects the new topmost state, i.e., qa0 here, and selects an outgoing
transition whose trigger fits the nonterminal edge produced in the first step, i.e.,
Dabc and the transition to qabc1 . The parser then pushes the target state with its
parameters bound according to the transition label. In our example, the stack is
then qa0qabc1 .

An accept action is in fact a particular reduce action for the start rule, i.e.,
rule 0 in our example. The input graph is accepted if the topmost state of the
stack is labeled with r0:S, i.e., state qabc1 in our example, and if all nodes and
edges of the input graph are marked as read. In our example with stack contents
qa0q

abc
1 , the parser has rather reached the accepting state, but there are some

unread edges and nodes, i.e., the input graph cannot be accepted yet.
The parser fails if neither a shift, reduce, nor accept action is possible.
As described in [4], such a CFA can be computed for every HR grammar.

But it can control a PSR parser as described above only if its states do not
have conflicts. A conflict is a situation where the parser must choose between
different actions. It is clear that the parser cannot run into a dead end if no state
of the CFA has a conflict; the parser can then always predict the correct action
which avoids a dead end for valid graphs.5 But in the case of conflicts, the parser
must choose between several actions; it cannot predict the correct next action.
A grammar with such a CFA is not PSR parseable.

Our example grammar for Sierpinski graphs is not PSR parseable because
states qabcde3 and qabcdef6 have conflicts. When the parser reaches qabcde3 , for in-
stance, it must read a t-edge in the next shift step, and it must choose between
an edge being attached to b (or rather the node that b is bound to) or e, indicated
by the transition to qabc2 .

4 Generalized Predictive Shift-Reduce Parsing

In [7] we have proposed generalized PSR (GPSR) parsing for grammars that are
not PSR parseable. A GPSR parser is primarily a PSR parser that follows all
different choices if a state has conflicts. It tries to save time and space in a similar
way as M. Tomita’s generalized LR parser for context-free string grammars [12].
Let us briefly summarize how GPSR parsing works.

Whereas a PSR parser maintains a single stack for parsing, a GPSR parser
in fact maintains a set of stacks. This set is stored as a so-called graph-structured
stack (GSS), which is described in the next paragraph. For each stack, the parser
determines all possible actions based on the CFA as described for the PSR parser.
The parser has found a successful parse if the action is accept and the entire input
graph has been read. (It may proceed if further parses shall be found.) If the
parser fails for a specific stack, the parser just discards this stack, stops if this has
been the last remaining stack, and fails altogether if it has not found a successful
5 This does not necessarily mean that PSR parsers are deterministic; different edges
may be chosen for the same shift action. This does not occur in our example of
Sierpinski graphs. In general, a grammar can only be PSR parseable if it additionally
satisfies the free edge choice property [4].
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parse previously. If the CFA, however, indicates more than one possible action,
the parser duplicates the stack for each of them, and performs each action on
one of the copies.

In fact, a GPSR parser does not store complete copies of stacks, but shares
their common prefixes and suffixes. The resulting structure is a DAG known
as a graph-structured stack (GSS) as proposed by M. Tomita [12]. Each node
of this DAG (called GSS node in the following) is a state. An individual stack
is represented as a path in the GSS, from some topmost state to the unique
initial state. Working on the GSS instead of on a set of complete copies of
different stacks does not only save space, but also time: instead of repeating the
same operations on different stacks that share the same suffix, the parser has to
perform these actions only once. Furthermore, maintaining the GSS simplifies
the construction of all parse trees (the so-called parse forest) of an ambiguous
input. But we ignore this aspect in this paper.

Remember that we represent graphs as permutations of edges. By trying
out every action offered by the CFA in each step, the GPSR parser effectively
performs an exhaustive search in the set of all permutations of the input graph
edges permitted by the CFA. This has two immediate effects for a GPSR parser:

Consider two different stacks reached by the GPSR parser. Each stack rep-
resents a different history of choices the parser has made. In particular, different
input graph edges may have been read in these histories. The parser, therefore,
cannot globally mark edges as read, but it must store, for each stack separately,
which edges of the input graph have been read. In fact, each GSS node keeps
track of the set of input graph edges that have been read so far. Note that GSS
nodes may be shared only if both their concrete states and their sets of read
edges coincide.

Whenever the parser has a GSS that represents at least two different stacks,
it must choose the stack that it considers next for its actions. It may employ
a breadth-first strategy or a depth-first strategy. In [7], we have shown for two
example languages (series-parallel graphs and structured flowcharts; see Sect. 6)
that the chosen strategy strongly affects the parser speed. In fact, a standard
strategy was always too slow, even slower than a simple CYK parser. Instead,
specifically tailored strategies have been used that give certain grammar rules
preference over others. This requires extra manual work when building a parser
and was the motivation for this paper, in particular because even this does not
always help in creating a GPSR parser that is faster than a CYK parser.

As a matter of fact, breadth-first and depth-first produce slow parsers for the
language of Sierpinski graphs, too. We shall demonstrate this by describing the
steps of the GPSR parser for the input graph tabctbdetcfgtdhiteijtfjktgkl (see Fig. 1).
To save space, we refer to these edges by numbers 1 = tabc, 2 = tbde, 3 = tcfg, 4 =
tdhi, 5 = teij, 6 = tfjk, 7 = tgkl. These numbers correspond to the numbers within
the triangles in Fig. 1. And we write GSS nodes in compact form: e.g., 2dhi124 refers
to the concrete state qdhi2 and indicates that the edges 1 = tabc, 2 = tbde, and
4 = tdhi have been read already. Fig. 3 shows the graph-structured stacks after
each step of the GPSR parser where a step consists of all actions performed by
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Fig. 3. Graph-structured stacks and steps of the GPSR parser when parsing the Sier-
pinski graph with the edges 1 = tabc, 2 = tbde, 3 = tcfg, 4 = tdhi, 5 = teij, 6 = tfjk, 7 = tgkl.

the parser when working on a specific state. Stacks grow to the right, i.e., the
initial state is at the left end whereas topmost states are at the right ends. The
steps in fact follow the depth-first strategy which turned out to be a bit faster
than the breadth-first strategy.

The parser starts (step 0) with a single stack that contains just 0a∅, i.e., the
initial (concrete) state qa0 where no edge has been read yet. The first four steps
are just PSR steps as described in the previous section: edge 1 = tabc is shifted
in step 1, a reduce action for rule 2 happens in step 2. Edge 2 = tbde is shifted in
step 3, and this edge is reduced using rule 2 in step 4, reaching state qbdeac3 . This
state allows to shift 3 = tcfg as well as 4 = tdhi (see Fig. 2), producing two stacks,
represented by the GSS after step 5. Note that the topmost states of these stacks
are both q2-states, but with different parameter bindings and differing sets of
read input graph edges. 2cfg123 is reduced in step 6, resulting in 5cfge123 , which is
considered next in step 7 because of the depth-first strategy. In fact, the parser
continues working on this stack until it fails in step 12: the stack has the topmost
state 5cjle12367 when step 12 starts, i.e., only 4 = tdhi and 5 = teij are yet unread,
but they do not fit to any outgoing transition of qcjle5 . The parser continues with
working on the remaining stack, i.e., with topmost state 2dhi124. The remaining
steps are again plain PSR steps because the parser need not choose between
different actions until it accepts the input graph in step 24 in state 1ahl1234567, i.e.,
the accepting state with all edges having been read.
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Fig. 4. Visual representation of the edges that are marked as read after the different
steps in Fig. 3.

The parser has in fact wasted time by choosing the topmost state 2cfg123 for
the next stack to work on in step 6. If it had chosen 2dhi124 instead, it would have
eventually reached the following GSS in step 17:

0a
∅ 1ahl

1234567

1abc
1 3bdeac

12 2dhi
124

i.e., the parser would have found a successful parse after 17 instead of 24 steps.
Of course, the parser could then continue with the remaining stack, which would
correspond to the steps 6–12 in Fig. 3., i.e., it would not produce further results.
The parser can terminate as soon as it has found a parse because the grammar
is unambiguous. But even if the grammar were ambiguous, the parser could
terminate after the first parse being found if one is interested in just one parse.

So the question remains whether the parser could be improved by more care-
fully choosing the stack where the parser continues. For this purpose, consider
Fig. 4, which shows the diagram of the input graph after steps 1–20 in Fig. 3.
It highlights those edges that are marked as read in the state that has just been
pushed to the GSS in the corresponding step. In the steps 1 and 2, for instance, it
is the topmost triangle 1 = tabc, in steps 3 and 4 triangles 1 = tabc as well as 2 =
tbde, and so on. Fig. 4 does not show the situation for steps 21–24 where all edges
are marked as read. As one can see, the parser erroneously “walks down” to the
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lower right triangles 3, 6, and 7 in steps 6–11, discards the corresponding stack in
step 12, and again walks down the same path in steps 17–20. So one could assume
that a strategy that chooses the left walk first (which corresponds to state 2dhi124)

54
3

1

2

9

S-counterexample-big.pdf

87

6

instead of the right walk (which corresponds to
state 2cfg123) would improve the parser behavior. How-
ever, this is in general not the case. The figure to the
right shows a Sierpinski graph where walking down
right first finds the parse faster than walking down left
first (25 vs. 30 steps): Walking left down first reduces
triangles 6–8 twice, once before reducing triangles 3–
5 and once after that, which is avoided when walk-
ing right down first. Apparently, there is not an easy
strategy to always find the parse fast. But memoization
solves this problem.

5 Memoization

The GPSR parser finds a parse for a valid input graph faster if it either avoids
dead ends like the erroneous walk right down in steps 6–11 (Fig. 4) or if the
effort spent in such a dead end is not wasted, but is reused later. To see this,
let us consider the parsing steps in Fig. 3 more closely. In step 11, it performs a
reduce action for rule 1 on state 4cjlfgk12367 producing a nonterminal Dcjl (see Fig. 2),
popping three states off the stack yielding 3bdeac12 as a (temporary) topmost state
and then pushes state 5cjle12367. Moreover, it is known, by comparing the set of
read edges of this new topmost state with the set of its predecessor on the stack,
that Dcjl represents the subgraph consisting of the triangles 3, 6, and 7. But
the same nonterminal Dcjl representing the same subgraph is again produced in
step 23 where the parser performs a reduce action for rule 1 on state 4cjlfgk1234567,
pops three states off the stack yielding state 3bhjac1245 , and performs a goto step to
4ahlbcj1234567 triggered by Dcjl (see Fig. 2). Note, however, that 3bhjac1245 was already the
topmost state after step 16. So if the parser remembered that it has produced
a Dcjl earlier, it could reuse it in step 17 and perform a goto step to 4ahlbcj1234567
right away. As a result, the parser would immediately reach the GSS that Fig. 3
shows after step 23, i.e., the parser would skip six steps and accept the input
graph in 18 instead of 24 steps.

In the following, we describe how this observation leads to a systematic ap-
proach that allows to skip entire sequences of parsing steps by reusing nonter-
minal edges that have been produced earlier. This is a memoization approach
because it depends on memorizing these nonterminal edges.

The main idea is to store a nonterminal edge in a memo store whenever
it is produced in a reduce action and to look up nonterminals in the memo
store whenever the parser reaches a state with an outgoing transition triggered
by nonterminal edges. The memo store in fact must store nonterminal edges
together with the set of terminal edges that are represented by them. To be
more precise, let us assume that the parser analyzes the input graph h ∈ GT .
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The memo store then contains pairs 〈A, g〉 where A is a nonterminal edge,
g ∈ GT is a terminal graph with A⇒∗ g and h ./ gh′ for some graph h′ ∈ GT ,
i.e., g consists of input graph edges. For instance, the memo store after step 16
in Fig. 3 consists of the following pairs, produced by the reduce actions in one
of the previous steps:

{〈Dbhj, 245〉, 〈Dbde, 2〉, 〈Dcjl, 367〉, 〈Dcfg, 3〉,
〈Dabc, 1〉, 〈Ddhi, 4〉, 〈Deij, 5〉, 〈Dfjk, 6〉, 〈Dgkl, 7〉},

Edges in the second components of pairs are again represented by their numbers.
The lookup operation is controlled by the nodes bound to parameters of the

current state, by the (nonterminal) label of the transition, and by the set R of
edges that are marked as read in the current state. The lookup operation may
return valid pairs only. These are pairs 〈A, g〉 whose graph g does not contain
any edge that is also a member of R. Otherwise, edges in g and in R would be
read twice.6

As an example, let us now consider state 3bhjac1245 after step 16. The CFA (Fig. 2)
has three outgoing transitions with nonterminal triggers Dhxy, Dcjx, and Dcxy

when replacing parameters by nodes bound to them. x and y may be bound only
to nodes that have not yet been read in state 3bhjac1245 . Unread nodes are determined
by the set 1245 of read edges, i.e., f, g, k, l are unread in this state. The memo
store, therefore, does not contain a pair for Dhxy, but it contains 〈Dcjl, 367〉
for Dcjx and 〈Dcfg, 3〉 for Dcxy. Note that 〈Dcjl, 367〉 does not fit Dcxy because
node j has been read already. The lookup operation, therefore, has in fact found
two valid pairs, and the parser could perform goto actions with both of them.
Moreover, it can ignore them both and continue in the regular way, i.e., shift
edge 3 = tcfg (see step 17 in Fig. 3). Because the GPSR parser, by design, does
not rule out any choice, it will consider all of them. That way, memoization does
not affect the correctness of the parser; if reusing of nonterminals does not lead
to acceptance of a valid input graph, regular GPSR will do. But the parser needs
a criterion which of the choices to try first. The natural choice is to prioritize the
nonterminal edge that represents the largest subgraph; the corresponding goto
has the potential to skip the longest sequence of parsing steps. In our example,
this is 〈Dcjl, 367〉, i.e., just the case described at the beginning of this section.

The Grappa1, parser distiller has been extended to generate parsers that
maintain a memo store in hash tables and that look up all valid pairs when
the parser reaches a state with outgoing nonterminal edges. Looked up pairs are
ordered by the size of their represented subgraph and tried in that sequence. And
it tries the regular GPSR actions if none of these choices leads to acceptance.

6 We assume that there are no parallel edges with the same label. Otherwise, each
edge must have a unique name and the lookup operation must make sure that it
does not return an edge with a name that is also a member of R.
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Fig. 5. Recursive definition of Sierpinski graphs Tn for n > 0 (left) and running time
(in ms) of different parsers analyzing Tn for varying values of n (right).

6 Evaluation

We now report on running time experiments when parsing Sierpinski graphs. We
generated three different parsers: a CYK parser using DiaGen7 [11], a GPSR
parser using the depth-first strategy described in Sect. 4, and finally a GPSR
parser using the depth-first strategy and memoization as described in the pre-
vious section. The GPSR parsers have been generated using Grappa, and they
stop as soon they can accept the input graph. The CYK parser was in fact
optimized in two ways: the parser creates nonterminal edges by dynamic pro-
gramming, and each of these edges can be derived to a certain subgraph of the
input graph. The optimized parser makes sure that it does not create two or
more indistinguishable nonterminals for the same subgraph, even if the nonter-
minals represent different derivation trees (which does not occur here.) And it
stops as soon as it finds a derivation of the entire input graph.

Running time of the three parsers has been measured for Sierpinski graphs
Tn for different values of n. Each Tn consists of 2n + 1 triangles. T0 is just a
single triangle, and Tn (for n > 0) is made of Tk, Tm, and Tn−k−m−1 as shown
in Fig. 5 where k = b(n−1)/3c and m = b(n−k−1)/2c, i.e., the 2n+1 triangles
of Tn are as equally distributed to Tk, Tm, and Tn−k−m−1 as possible.

Fig. 5 shows the running time of the different parsers applied to Tn with
varying value n, measured on an iMac 2017, 4.2 GHz Intel Core i7, OpenJDK
12.0.1 with standard configuration, and is shown in milliseconds on the y-axis
while n is shown on the x-axis. Note the substantial speed-up when using mem-
oization (called “Memo” in the legend) compared to the plain GPRS parser
(called “GPSR”). In fact, the GPSR parser using memoization allows to parse
Sierpinski graphs which cannot be parsed in practice by the other two parsers.

Moreover, we reconsider the examples of series-parallel graphs and structured
flowcharts, which we have used in [7]:

The following rules generate series-parallel graphs [6, p. 99]:

Zε→
0

Gxy Gxy→
1

exy Gxy→
2

Gxy Gxy Gxy→
3

Gxz Gzy

7 Homepage: www.unibw.de/inf2/diagen
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Fig. 6. A structured flowchart and its graph representation.

Structured flowcharts are flowcharts that do not allow arbitrary jumps, but
represent structured programs with conditional statements and while loops.
They consist of rectangles containing instructions, diamonds that indicate con-
ditions, and ovals indicating begin and end of the program. Arrows indicate
control flow; see Fig. 6 for an example (text within the blocks has been omit-
ted). Flowcharts are easily represented by graphs as also shown in Fig. 6. The
following rules generate all graphs representing structured flowcharts:

Zε → beginx Pxy endy

Pxy → Sxy | Pxz Szy

Sxy → instrxy | condxuv Puy Pvy | condxuy Pux

None of these grammars is PSR because their CFAs have conflicts. We used
these examples in [7] to compare GPSR parsers with CYK parsers. We extend
these experiments here and additionally compare these parsers with a GPSR
parser using memoization.

As in [7], we employ GPSR parsers with two different strategies for series-
parallel graphs and for structured flowcharts. GPSR 1 employs a breadth-first
strategy whereas GPSR 2 applies a more sophisticated strategy. It requires gram-
mar rules to be annotated with either first or second priority. The GPSR 2 parser
for series-parallel graphs gives rule 3 (series) precedence over rule 2 (parallel)
whereas the GPSR 2 parser for structured flowcharts gives sequences priority
over conditional statements.

Running time of the parsers has been measured for series-parallel graphs Sn
as shown in Fig. 7 and for flowcharts Fn defined in Fig. 8. Each Fn consists of
n conditions and 3n + 1 instructions. The flowchart in Fig. 6 is in fact F3. Fn
has a subgraph Dn, which, for n > 0, contains subgraphs Dm and Dm′ with
n = m + m′ + 1. Note that the conditions in Fn form a binary tree with n
nodes when we ignore instructions. We always choose m and m′ such that it is
a complete binary tree.

Fig. 9 shows the running time of the different parsers applied to Sn and Fn
with varying value n on the same platform as for Sierpinski graphs. The experi-
ments again show that the GPSR parser with memoization is substantially faster
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Fig. 8. Definition of flowchart graphs Fn.

0 100 200 300
0

200

400

600

800

1,000
GPSR 1
GPSR 2
CYK
Memo

0 1,000 2,000 3,000
0

200

400

600

800

1,000
GPSR 1
GPSR 2
CYK
Memo

Fig. 9. Running time (in ms) of different parsers analyzing series-parallel graphs Sn
(left) and structured flowcharts Fn (right) with varying value n.

than the CYK faster and even more faster than most of the GPSR parsers. Only
GPSR 2 for structured flowcharts is a bit faster than the memoization parser
because it need not maintain the memo store. But note that realizing the hand-
tailored strategy for the GPSR 2 parser required additional programming work,
whereas the memoization parser has been generated by the Grappa distiller
without any further manual work.

7 Conclusions

We have proposed to use memoization to make GPSR parsing faster by memo-
rizing nonterminal edges that have been created in the search process and that
are discarded by plain GPSR parsing although this information could be reused
later. Our experiments with three example languages (Sierpinski graphs, series-
parallel graphs, and structured flowcharts) have shown that GPSR parsing with
memoization is in fact substantially faster for theses examples. However, mem-
oization is not a silver bullet. It cannot speed up GPSR parsing when analyzing
invalid input graphs. In these cases, they must completely traverse the entire
search space, essentially falling back to plain GPSR parsing. The same applies
if one is not only interested in one successful parse, but in all parses if the input
graph is ambiguous.

Memoization techniques have also been used to speed up GLR parsers for
strings; Kipps improved the original GLR algorithm from O(nk+1) to O(n3) (see
Sect. 1) using memoization [8]. And this speed-up is independent of the input
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string being valid or invalid. But memoization for GLR parsing differs entirely
from memoization for GPSR parsers proposed here: A GLR parser searches all
parsers of the input graph in parallel, and all these “parsing processes” are syn-
chronized by reading one input string token after the other. Memoization helps
to speed up reduce steps in the graph-structured stack. A GPSR parser, instead,
must try different “reading sequences” of the input graph, and memoization helps
to reuse information that has been found earlier in a different reading sequence.

In future work, we will apply GPSR parsing with memoization to examples
from natural language processing, in particular for parsing Abstract Meaning
Representations (AMR) [1]. PSR parsing cannot be applied there because almost
all grammars are ambiguous in this field. In particular, we would like to compare
our parser with the state of the art in this field, i.e., the Bolinas parser [2] by
D. Chiang, K. Knight et al. that implements the polynomial algorithm for HR
grammars devised in [10] and the s-graph parser [5] by A. Koller et al.

References
1. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U.,

Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representa-
tion for sembanking. In: Proc. 7th Linguistic Annotation Workshop at ACL 2013
Workshop. pp. 178–186 (2013)

2. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proc. 51st Ann. Meeting of the
Assoc. for Computational Linguistic (Vol. 1: Long Papers). pp. 924–932 (2013)

3. Drewes, F., Hoffmann, B., Minas, M.: Approximating Parikh images for generating
deterministic graph parsers. In: Software Technologies: Applications and Founda-
tions - STAF 2016 Collocated Workshops. LNCS 9946, pp. 112–128 (2016)

4. Drewes, F., Hoffmann, B., Minas, M.: Formalization and correctness of predictive
shift-reduce parsers for graph grammars based on hyperedge replacement. Journal
of Logical and Algebraic Methods in Programming 104, 303–341 (Apr 2019).

5. Groschwitz, J., Koller, A., Teichmann, C.: Graph parsing with s-graph grammars.
In: Proc. of the 53rd Annual Meeting of the Association for Computational Lin-
guistics, ACL 2015, Vol. 1: Long Papers. pp. 1481–1490 (2015)

6. Habel, A.: Hyperedge Replacement: Grammars and Languages, LNCS 643.
Springer (1992)

7. Hoffmann, B., Minas, M.: Generalized predictive shift-reduce parsing for hyperedge
replacement graph grammars. In Proc. LATA 2019, LNCS 11417, pp. 233–245.

8. Kipps, J.R.: GLR parsing in time O(n3). In: Tomita, M. (ed.) Generalized LR
Parsing, pp. 43–59. Springer US, Boston, MA (1991).

9. Knuth, D.E.: On the translation of languages from left to right. Information and
Control 8(6), 607 – 639 (1965)

10. Lautemann, C.: The complexity of graph languages generated by hyperedge re-
placement. Acta Informatica 27, 399–421 (1990)

11. Minas, M.: Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Science of Computer Programming 44(2), 157–180 (2002)

12. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In:
Proc. of the 9th Int. Joint Conf. on Artificial Intelligence. pp. 756–764 (1985)

13. Younger, D.H.: Recognition and parsing of context-free languages in time n3. In-
formation and Control 10(2), 189–208 (1967)

48



Rule-based graph repair?
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Abstract. Model repair is an essential topic in model-driven engineer-
ing. Since models are suitably formalized as graph-like structures, we
consider the problem of rule-based graph repair: Given a rule set and a
graph constraint, try to construct a graph program based on the given
set of rules, such that the application to any graph yields a graph sat-
isfying the graph constraint. We show the existence of rule-based repair
programs for specific constraints compatible with the rule set.

1 Introduction

In model-driven software engineering the primary artifacts are models, which
have to be consistent wrt. a set of constraints (see e.g. [EEGH15]). These con-
straints can be specified by the Object Constraint Languague (OCL). To increase
the productivity of software development, it is necessary to automatically de-
tect and resolve inconsistencies arising during the development process, called
model repair (see, e.g. [NEF03,MTC17,NKR17]). Since models can be repre-
sented as graph-like structures [BET12] and a subset of OCL constraints can
be represented as graph conditions [RAB+18], we investigate graph repair and
rule-based graph repair.

In [HS18], the problem of graph repair is considered: Given a graph constraint d,
we derive a rule set R(d) from the constraint d and try to construct a graph
program using this rule set, called repair program. The repair program is con-
structed, such that the application to any graph yields a graph satisfying the
graph constraint. In this paper, we consider the problem of rule-based graph
repair : Given a set of rules R and a constraint d, try to construct a repair pro-
gram P based on the rule set R, i.e. we equip the rules of R with application
conditions [HP09], with interface [Pen09], and a context. The repair program in
[HS18], and an R(d)-based repair program for d are equal.

Rule-based repair problem

rule-based
repairconstraint d

rule set R
R-based program P

∀G⇒P H.H |= d

? This work is partly supported by the German Research Foundation (DFG), Grants
HA 2936/4-2 and TA 2941/3-2 (Meta-Modeling and Graph Grammars: Generating
Development Environments for Modeling Languages).
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If a graph G is generated by a grammar with rule set R, then, after the ap-
plication of an R-based program, the result can be generated by the grammar,
too.

We show that, given a rule-system compatible with a “proper” constraint without
conjunctions and disjunctions, a rule-based repair program for the constraint can
be constructed. Unfortunately, compatibility is undecidable. Fortunately, it turns
out to be semi-decidable. We illustrate our approach by a small railroad system.

Example 1 (railroad system). The specification of a railroad system is given
in terms of graphs, rules (for moving the trains), and constraints. The basic items
are waypoints, bi-directional tracks and trains. The static part of the system is
given by a directed rail net graph: tracks are modeled by undirected edges (or
a pair of directed edges, respectively) and trains are modeled by edges. Source
and target nodes of a train edge encode the train’s position on the track and
the direction of its movement. The dynamic part of the system is specified by
graph transformation rules. The rules model the deletion and movement of trains
thereon.

Delete = 〈
1 2

←↩ 1 2 ↪→ 1 2〉

Move = 〈
1 2 3

←↩ 1 2 3 ↪→
1 2 3

〉

The structure of the paper is as follows. In Section 2, we review the definitions
of graphs, graph conditions, and graph programs. In Section 3, we introduce
rule-based repair programs, show that there are rule-based repair programs for
so-called proper conditions (without conjunctions and disjunctions) compatible
with a rule set, and show that compatibility is semi-decidable. In Section 4, we
present some related concepts. In Section 5, we give a conclusion and mention
some further work.

2 Preliminaries

In the following, we recall the definitions of directed, labelled graphs, graph
conditions, rules, and graph programs [EEPT06,HP09].

A directed, labelled graph consists of a set of nodes and a set of edges where
each edge is equipped with a source and a target node and where each node and
edge is equipped with a label.

Definition 1 (graphs & morphisms). A (directed, labelled) graph (over a
label alphabet L) is a system G = (VG,EG, sG, tG, lV,G, lE,G) where VG and EG

are finite sets of nodes (or vertices) and edges, sG, tG : EG → VG are total func-
tions assigning source and target to each edge, and lV,G : VG → L, lE,G : EG → L
are total labeling functions. If VG = ∅, then G is the empty graph, denoted by ∅.
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A graph is unlabelled if the label alphabet is a singleton. Given graphs G and
H, a (graph) morphism g : G→ H consists of total functions gV : VG → VH and
gE : EG → EH that preserve sources, targets, and labels, that is, gV◦sG = sH◦gE,
gV ◦ tG = tH ◦ gE, lV,G = lV,H ◦ gV, lE,G = lE,H ◦ gE. The morphism g is injective
(surjective) if gV and gE are injective (surjective), and an isomorphism if it is
injective and surjective. In the latter case, G and H are isomorphic, which is
denoted by G ∼= H. An injective morphism g : G ↪→ H is an inclusion morphism
if gV(v) = v and gE(e) = e for all v ∈ VG and all e ∈ EG.

Graph conditions are nested constructs, which can be represented as trees of
morphisms equipped with quantifiers and Boolean connectives. Graph conditions
and first-order graph formulas are expressively equivalent [HP09].

Definition 2 (graph conditions). A (graph) condition over a graph A is of the
form (a) true or (b) ∃(a, c) where a : A ↪→ C is a proper inclusion morphism1

and c is a condition over C. For conditions c, ci (i ∈ I for some finite index set I)
over A, ¬c and ∧i∈Ici are conditions over A. Conditions over the empty graph ∅
are called constraints. In the context of rules, conditions are called application
conditions.

Graph conditions may be written in a more compact form: ∃ a := ∃ (a, true),
false := ¬true and ∀(a, c) := @ (a,¬c). The expressions ∨i∈Ici and c ⇒ c′ are
defined as usual. For an inclusion morphism a : A ↪→C in a condition, we just
depict the codomain C, if the domain A can be unambiguously inferred.

Definition 3 (semantics). Any injective morphism p : A ↪→ G satisfies true.

An injective morphism p satisfies ∃ (a, c) with
a : A ↪→ C if there exists an injective morphism
q : C ↪→ G such that q ◦ a = p and q satisfies c.

A

G

C,a

p q
=

c

|=
)∃ (

An injective morphism p satisfies ¬c if p does not satisfy c, and p satisfies ∧i∈Ici
if p satisfies each ci (i ∈ I). We write p |= c if p satisfies the condition c (over A).
A graph G satisfies a constraint c, G |= c, if the morphism p : ∅ ↪→ G satisfies c.
JcK denotes the class of all graphs satisfying c. A constraint c is satisfiable if
there is a graph G that satisfies c. Two conditions c and c′ over A are equivalent,
denoted by c ≡ c′, if for all graphs G and all injective morphisms p : A ↪→ G,
p |= c iff p |= c′. A condition c implies a condition c′, denoted by c ⇒ c′, if for
all graphs and all injective morphisms p : A ↪→ G, p |= c implies p |= c′.

Definition 4 (conditions with alternating quantifiers). Conditions of the
form Q(a1,Q(a2,Q(a3, . . .))) with Q ∈ {∀,∃ }, ∀ = ∃ , ∃ = ∀ ending with a
condition of the form ∃ b or @ b are conditions with alternating quantifiers.

Fact 1 (alternating quantifiers [HS18]). For every condition, an equivalent
condition with alternating quantifiers can be constructed.
1 Without loss of generality, we may assume that for all inclusion morphisms a : A ↪→ C

in the condition, A is a proper subgraph of C.
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Definition 5 (proper conditions). A condition with alternating quantifiers
is proper if it ends with an existential condition ∃ b, or it is a condition of the
form ∃ (a,∀(b, false)) ≡ ∃ (a,@ b).

Fact 2 ([HS18]). Proper conditions are satisfiable.

Plain rules are specified by a pair of injective graph morphisms. For restricting
the applicability of rules, the rules are equipped with a left application condition.
Moreover, they may be equipped with a left- and a right interface. By the inter-
faces, it becomes possible to hand over information between the transformation
steps.

Definition 6 (rules with context & interface).

1. A plain rule p = 〈L←↩ K ↪→ R〉 consists of two inclusion morphisms K ↪→ L
and K ↪→ R.

2. The rule p equipped with context k′ : K ↪→ K ′ is p[k′] = 〈L′ ←↩ K ′ ↪→ R′〉
where L′ and R′ are constructed as pushouts of L ←↩ K ↪→ K ′ and R ←↩
K ↪→ K ′, respectively.

3. A rule % = 〈x, p, ac, y〉 (with interfaces X and Y ) consists of a plain rule
p = 〈L ←↩ K ↪→ R〉 with left application condition ac and two injective
morphisms x : X ↪→ L, y : Y ↪→ R, called the left and right interface.

L K R

K ′L′ R′
k′(1) (2)

X L K R Y

DG H

x l r y

g g′ h′
h

i

tr

(1) (2)
= =

ac

An interface is empty if the domain of the interface morphism is empty.

A triple 〈g, h, i〉 with partial morphism i = y−1◦r◦l−1◦x is in the semantics of %,
denoted by J%K, if there is an injective morphism g′ : L ↪→ G such that g = g′ ◦x
and g′ |= ac, G ⇒p,g′,h′ H, and h = h′ ◦ y. This is denoted by G ⇒%,g,h,i H
or short G ⇒% H, and called direct transformation. Given graphs G, H and a
finite set R of rules, G derives H by R if G ∼= H or there is a sequence of direct
transformations G = G0 ⇒%1

. . .⇒%n
Gn = H with %1, . . . , %n ∈ R. In this case,

we write G⇒∗R H or just G⇒∗ H.

The application of such a rule to a graph amounts to the following steps: Let
g : X ↪→ G be given.

(1) Select a match g′ : L ↪→ G such that g = g′ ◦ x and g′ |= ac.
(2) Apply the plain rule p at g′ (possibly yielding a comatch h′ : R ↪→ H).
(3) Unselect h : Y ↪→ H, i.e., define h = h′ ◦ y.
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The application of a plain rule is as in the double-pushout approach [EEPT06].

Notation. Empty interfaces and true application conditions are not written. If
both interfaces of % = 〈x, p, ac, y〉 are empty, we write % = 〈p, ac〉. If additionally
ac = true, we write % = 〈p〉 or short p and speak of the underlying plain rule.
A plain rule p = 〈L←↩ K ↪→ R〉 sometimes is denoted by L⇒ R where indexes
in L and R refer to the corresponding nodes. The rules % = 〈x, ac〉 and 〈y〉 are
denoted by Sel(x, ac) (selection of additional elements) and Uns(y) (unselection
of selected elements). Additionally, Sel(x) abbreviates Sel(x, true).

With every transformation t : G⇒∗ H a partial track morphism can be associ-
ated that “follows” the items of G through the transformation: this morphism
is undefined for all items in G that are removed by t, and maps all other items
to the corresponding items in H.

Definition 7 (track morphism). The track morphism trG⇒H from G to H
is the partial morphism2 defined by trG⇒H(x) = incH(inc−1G (x)) if x ∈ D and
undefined otherwise, where incG = inc ◦ incG′ and inc−1G : incG(D) ↪→ D is
the inverse of incG. Given a transformation G ⇒∗ H, trG⇒∗H is defined by
induction on the length of the transformation: trG⇒∗H = iso for an isomorphism
iso : G

∼→H, and trG⇒∗H = trG′⇒H ◦ trG⇒∗G′ for G⇒∗ H = G⇒∗ G′ ⇒ H.

Conditions can be “shifted” over morphisms and rules.

Lemma 1 (Shift,Left [HP09]). There are constructions Shift and Left, such
that the following holds. For each condition d over A and injective morphisms
b : A ↪→ R,n : R ↪→ H, n ◦ b |= d ⇐⇒ n |= Shift(b, d).
For each rule p = 〈L ←↩ K ↪→ R〉 and each condition ac over R, for each
G⇒p,g,h H, g |= Left(p, ac) ⇐⇒ h |= ac.

Construction 1. The construction is as follows.

A

C

R

R′

a a′(0)

b

b′

d

Shift(b, true) := true.
Shift(b,∃ (a, d)) :=

∨
(a′,b′)∈F ∃ (a′,Shift(b′, d)) where

F = {(a′, b′) | b′ ◦ a = a′ ◦ b, a′, b′ inj, (a′, b′) jointly surjective3}
Shift(b,¬d) := ¬Shift(b, d), Shift(b,∧i∈Idi) := ∧i∈IShift(b, di).

R K L

K ′R′ L′

a a′(1) (2)

ac

Left(p, true) := true.
Left(p, ∃ (a, ac)) := ∃ (a′,Left(p′, ac)) if p−1 4 is applicable
w.r.t. the morphism a, p′ := 〈L′ ←↩ K ′ ↪→ R′〉 is the derived
rule, and false, otherwise.
Left(p,¬ac) := ¬Left(p, ac), Left(p,∧i∈Iaci) :=
∧i∈ILeft(p, aci).

2 A partial graph morphism G ⇀ H is an injective morphism S ↪→ H such that S ⊆ G.
3 A pair (a′, b′) is jointly surjective if for each x ∈ R′ there is a preimage y ∈ R with
a′(y) = x or z ∈ C with b′(z) = x.
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Graph programs [HP01] are made of sets of rules with application conditions,
sequential composition, and as-long-as possible iteration. More specifically, we
consider graph programs with interface [Pen09] that are capable of handling over
a selection of elements between computation steps.

Definition 8 (graph programs with interface). The set of (graph) programs
with interface X, Prog(X), is defined inductively:

(1) Every rule with interface X is in Prog(X).
(2) If P ∈ Prog(X) and Q ∈ Prog5, then 〈P ;Q〉 ∈ Prog(X).
(3) If P,Q ∈ Prog(X), then {P,Q}, P ↓, and try P are in Prog(X).

Definition 9 (semantic of programs with interface). The semantics of a
program P with interface X, denoted by JP K, is a set of triples such that - for
all 〈g, h, i〉 ∈ JP K, X = dom(g) = dom(i)6 and dom(h) = ran(i) - and is defined
as follows:

J〈P ;Q〉K = {〈g1, h2, i2◦i1〉 | 〈g1, h1, i1〉∈JP K, 〈g2, h2, i2〉∈JQK and h1 = g2}
J{P,Q}K = JP K ∪ JQK
JP ↓K = {〈g, h, id〉 ∈ P ∗ | @h′.〈h, h′, id〉 ∈ JFix(P )K}

where P 0 = Skip, P j = 〈Fix(P );P j−1〉 with j > 0, JP ∗K =
⋃∞

j=0JP jK, and
JFix(P )K = {〈g, h ◦ i, id〉 | 〈g, h, i〉 ∈ JP K}. If 〈g, h, i〉 ∈ JP K with g : X ↪→ G,
h : Y ↪→ H, and partial morphism i : X ↪→ Y , we write G ⇒P,g,h,i H or short
G⇒P H.

Additionally, we introduce the try statement as in [PP13]. Intuitively, try
keeps the changes of the program, if the execution is successful, and discards
them, otherwise. The semantics of try is given in the style of structural opera-
tional semantics, and can be found in [PP13]. The statement Skip is the identity
element Sel(id, true) of sequential composition.

In the double-pushout approach, the dangling condition for a rule % = 〈L⇒ R〉
and an injective morphism g : L ↪→ G requires: “No edge in G−g(L) is incident
to a node in g(L−K)”. For this condition, there is a program such that after
application the dangling condition is satisfied.

Fact 3 (program for deleting dangling edges [HS18]). For every node-
deleting7 rule % with left-hand side L and every match g : L ↪→ G, there is
an edge-deleting program Pdg(%), such that ∀G ⇒Pdg(%) H, with partial track
morphism tr : G ↪→ H, the rule % becomes applicable at tr ◦ g.
4 For a rule p = 〈L ←↩ K ↪→ R〉, p−1 = 〈R ←↩ K ↪→ L〉 denotes the inverse rule. For
L′ ⇒p R′ with intermediate graph K′, 〈L′ ←↩ K′ ↪→ R′〉 is the derived rule.

5 Programs with arbitrary interface are denoted by Prog.
6 For a morphism m, dom(m) denotes the domain, ran(m) denotes the codomain of m.
7 A rule p = 〈L←↩ K ↪→ R〉 is node-preserving if |VL| = |VK |. It is node-deleting if it

is not node-preserving, i.e. |VL| > |VK |.
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Definition 10 (rule-based programs). Given a set of rules R, a program P
is R-based, if all rules in the program are rules in R equipped with context,
application condition, and interface. Additionally, the empty program Skip is
R-based.

Example 2. The rule Build = 〈 1 2 ←↩ 1 2 ↪→ 1 2 〉 equipped

with context k′ : ↪→ , and application condition ac = @ ∧
∃ , yields to the R-based program P = try Build2, where

Build2 = 〈 ←↩ ↪→ ,@ ∧ ∃ 〉.

The program Delete ↓ is not {Move}-based.

Remark. For every transformation G⇒P H by an R-based program P , there
is a transformation G⇒∗R H.

3 Rule-based graph repair

A repair program for a constraint is a graph program with the property that any
application to a graph yields a graph satisfying the constraint. More generally,
we consider repair programs for conditions.

Definition 11 (repair programs). Given a constraint d, a program P with
empty interface is a repair program for d if, for all transformations G ⇒P H,
H |= d. Given a condition ac over A, a program P with interface A is a repair
program for ac if, for all transformations G⇒P,g,h,i H, i preserves A, i.e. i(A) =
A, and h ◦ i |= ac.

Remark. There is a close relationship to Hoare triples. A repair program for
constraints c and d is a program such that, for all G⇒P H.G |= c implies H |= d.
Then, P is a repair program for c, d if and only if {c}P{d}.

Definition 12 (ac-resulting transformations). Given a condition ac over A,
a transformation t : G0 ⇒∗R H0 with x : A ↪→ G0 is ac-resulting if the transfor-
mation t preserves A, i.e., tr0(x(A)) = A, and tr0 ◦x |= ac8. It is minmal if there
is no ac-resulting transformation t′ : G′0 ⇒∗R H ′0 with G′0 ⊂ G0.

Given a condition ac over A, and an ac-resulting transformation, we construct
a repair program inductively as follows: If the transformation step yields to the
satisfaction of ac, we equip the rule % with an application condition ac0, such that
% becomes applicable provided there is a violation of ac, and the transformation
step is ac-guaranteeing. If the transformation step does not directly yield to the

8 tr0 : G0 ↪→ H0 denotes the partial track morphism from G0 to H0.

55



satisfaction of ac, we construct the ¬ac-preserving application condition. By the
left interface tr0 ◦ x, the graph A is fixed for the next rule application. It says
that at this position (and no other) the rule shall be applied.

For rule sets containing node-deleting rules, it might be necessary, to remove
dangling edges. Unfortunately, in general, the edge-deleting program Pdg(%), is
not R-based.

Definition 13 (closure under edge-deletion). A rule set R is closed under
edge-deletions if, for each node-deleting rule, the rules for deleting dangling edges
belong to R.

Remark. For rule sets R closed under edge-deletions, the program Pdg(%) is
R-based. Node-preserving rule sets are closed under edge-deletion.

Lemma 2 (from minimal transformations to programs). For rule sets R
closed under edge-deletions, and a minimal ac-resulting transformation t : G0 ⇒∗R
H0 with x : A ↪→ G0 and condition ac = ∃ a (@ a) over A, a repair program for
ac can be constructed.

Construction 2. Let t : G0 ⇒∗R H0 be an ac-resulting transformation with
match x : A ↪→ G0 and application condition ac = ∃ a (@ a) with a : A ↪→ C.
Then, the repair program P (t) is constructed inductively as follows.

(1) For t : G0 ⇒1
% H0, let

P (t) := 〈Sel(x, ac0);Pdg(%); %; Uns(y)〉 with

ac0 := Shift(x,¬ac) ⇒ Left(%, Shift(tr0 ◦ x, ac), if tr0 ◦ x |= ¬ac, ac0 :=
Shift(x,¬ac) ∧ Left(%, Shift(tr0 ◦ x, ac), if tr0 ◦ x |= ac, % = 〈G0 ⇒ H0〉,
y : A ↪→ H0, Pdg(%) as in [HS18], provided % is node-deleting.

L R

G0 H0A A
%x y

i

(2) For tn+1 : G0 ⇒n+1
R Gn+1, with subtransformations tn : G0 ⇒n

R Gn, and
t : Gn ⇒% Gn+1, and track morphism trn : G0 ↪→ Gn, a repair program is

P (tn+1) = P (tn); Uns(Gn ←↩ A); Sel(A ↪→ Gn+1);P (t).

Example 3. Let NoTwo = @ (∅ ↪→ ). For the rule set R1 = {Delete}

there is a NoTwo-resulting transformation ⇒
Delete2

via theR1-based pro-

gram Delete2 : 〈
1 2

⇒ 1 2,∃ 〉↓.
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For the rule set R2 = {Move, Delete}, and the constraint NoTwo, there is

a NoTwo-resulting transformation ⇒
Move2

via the R2-

based program Move2 : 〈 ⇒ ,∃ ∧ @ 〉.

Example 4 (no railroad repair). Consider the railroad system in Example 1
with the rules Move and Delete and the constraint Station = ∃

0 1

(there

exists a train station). Whenever the start graph has no station, then no station
can be created by a {Move, Delete}-based program. The reason is that the labels
of the constraint do not occur in the right-hand sides of the rules.

Proof. Let t : G0 ⇒∗R H0 be ac-resulting with match x : A ↪→ G0 and condition
ac = ∃ a (@ a) with a : A ↪→ C.
1. Since R is closed under edge deletion, Pdg is R-based, and, by Construc-
tion, P (t) is an R-based program. P (t) is also a repair program for ac: Let
G ⇒P (t),g,h,i H be an arbitrary transformation. Since t is minimal, there is no
transformation t′ : G′0 ⇒∗R H ′0, thus, there exists a morphism g′ : G0 ↪→ G. By the
definition of the application of a rule with interface (Definition 6), h◦i |= ac0: By
Lemma 1, and the fact that tr0◦x = y◦i, h = h′◦y, g′ |= Left(%,Shift(tr0◦x, ac0)
⇔ h′ |= Shift(tr0◦x, ac0) ⇔ h′◦tr0◦x |= ac ⇔ h′◦y◦i |= ac ⇔ h◦i |= ac.

L R

G0 H0

G H

A A
tr0

tr

x y

g h
g′ h′

2. Let tn+1 : G0 ⇒n+1
R Gn+1 be an ac-resulting transformation with match

x : A ↪→ G0 with subtransformations tn : G0 ⇒n
R Gn and t : Gn ⇒% Gn+1 with

match x2 : ran(tr0 ◦ x) ↪→ Gn . Then, there are two cases:

(A) tn is ¬ac-resulting. Then t is ac-resulting and, by inductive hypothesis, there
are repair programs P (tn) with interface A for ¬ac and P (t) for ac.

(B) tn is ac-resulting. Then t is ac-resulting and, by inductive hypothesis, there
are repair programs P (tn) and P (t) for ac.

Then P (tn+1) := P (tn); Uns(Gn ←↩ A); Sel(A ↪→ Gn+1);P (t) is an R-based
repair program for ac. 2

To get a repair program for proper conditions, we automatically break the con-
dition into conditions of the form ∃ (A ↪→ C) and @ (A ↪→ C).

(1) Try to find ac-resulting transformations via the rule set for the small condi-
tions if this is possible, i.e., the rule set is “compatible” with the condition.
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(2) Construct a R-based program P (a), according to Lemma 2.
(3) Combine the programs by the construction of interfaces to a program for the

condition d (see figure below).

∃ (a : A ↪→ B, ∀(b : B ↪→ C, ∃ (c : C ↪→ D)))d =

A
∗⇒
R
B′ |= ∃ a C

∗⇒
R
D′ |= ∃ c

(1) (1)

P (a); P (c);

(2) (2)

try P (a); Sel(a) 〈Sel(b,¬c); try P (c); Uns(b)〉 ↓; Uns(a)

(3) (3)

Pd =

Given a condition d, M∃ (d) (M@ (d)) denotes the sets of injective morphisms
in d occurring behind the existential (negated existential) quantifier and M(d)
their union.

Definition 14 (compatibility). Given a set of rules R and a constraint d,
R is d-compatible if, for all morphisms a : A ↪→ C in M(d), there is a set of
ac-resulting transformations T (a) via rules of R. If R consists of a single rule
%, we say that % is d-compatible instead of R is d-compatible.

Theorem 1 (Repair). For proper conditions d and a rule set R compatible
with d, an R-based repair program for d can be constructed.

Construction 3. The program Pd for d is constructed inductively as follows.

(1) For d = true, Pd = Skip.
(2) For d = ∃ a, Pd = try P (a).
(3) For d = @ a, Pd = P (a)↓.
(4) For d = ∃ (a, c), Pd = 〈try P (a); Sel(a);Pc; Uns(a)〉.
(5) For d = ∀(a, c), Pd = 〈Sel(a,¬c);Pc; Uns(a)〉↓

where P (a) = P (t(a)) and Pc denotes the R-based repair program for c.

Example 5. Consider the condition d = ∀( ,∃ ), meaning that
each train occupies a track, i.e. there are no derailed trains.

For the rule set R = {Build = 〈 1 2 ←↩ 1 2 ↪→ 1 2 〉}, and

the subcondition ∃ (a : ↪→ ) there is a ∃ a-resulting trans-

formation ⇒
Build

. The rule Build is equipped with the con-

text k′ : ↪→ , and application condition ac0 = @ ∧
∃ , yielding to the R-based repair program P∃ a = try Build2 for ∃ a,

where Build2 = 〈 ←↩ ↪→ ,@ ∧ ∃ 〉.

58



The R-based repair program for d is Pd = 〈Sel(a1,@ a);P∃ a; Uns(a1)〉 ↓ with

a1 = ∅ ↪→ , which intuitively works as follows: select a train, for which
there is no track, then add a track, provided there does not exist one, and
unselect the train. This is done as long as possible.

Remark. The statement holds for proper conditions: ∀( ◦
1
,∃ ◦

1
◦
2
,@ ◦

1
◦
2
◦ )

is satisfiable. By Construction 3, we do no get a repair program for it. This may
be handled by the deletion of nodes.

Fact 4 (repair).

(1) If P∃ a is a repair program for ∃ a, Pc a repair program for c, then 〈P∃ a; (Pc)a〉
is a repair program for ∃ (a, c).

(2) If Pc is a repair program for c, then (P ′c)a↓ is a repair program for ∀(a, c).

where (Pc)a = 〈Sel(a);Pc; Uns(a)〉 and (P ′c)a = 〈Sel(a,¬c);Pc; Uns(a)〉 are pro-
grams with interface A.

Proof. Let d be a proper condition,R be a rule set compatible with d, and Pd the
program as in Construction 3. By Construction 3, Pd is R-based. By induction
on the structure of d, we show that Pd is a repair program for d:

(1) Let d = true. By the semantics of Skip, for every transformation G ⇒Skip

H ∼= G |= true, i.e., Skip is a repair program for d.
(2) Let d = ∃ a and G ⇒try P (a) H be an arbitrary transformation. By com-

patibility, there is a ∃ a-resulting transformation t. (a) If G |= @ a, then,
by Lemma 2 H |= ∃ a. (b) If G |= ∃ a, then G ⇒try P (a) H ∼= G |= ∃ a.
Consequently, Pd is a repair program for ∃ a.

(3) Let d = @ a and G⇒P (a)↓ H be an arbitrary transformation. By compatibil-
ity, there is a @ a-resulting transformation t. By the semantics of ↓, P (a) is
not applicable to H, and by Lemma 2, H |= @ a, i.e., Pd is a repair program
for @ a.

(4) Let d = ∃ (a, c) and G ⇒Pd
H be an arbitrary transformation. By step (2),

try P (a) is a repair program for ∃ a with interface A. If c = @ b, then, by
step (3), Pc = P (b)↓ is a repair program for c. If c 6= @ b, then c is proper
and, by induction hypothesis, Pc is a repair program for c. In both cases, by
Fact 4, Pd is a repair program for ∃ (a, c).

(5) Let d = ∀(a, c) and G⇒Pd
H an arbitrary transformation. Since d is proper,

c is proper. By induction hypothesis, Pc is a repair program for c. By Fact 4,
Pd is a repair program for ∀(a, c). By the semantics of ↓, no rule is applicable
to H, i.e., H |= @ (a,¬c) ≡ ∀(a, c). 2

It remains the question, whether compatibility is decidable.

Unfortunately, the compatibility problem is undecidable. This follows immedi-
ately from the undecidability of the coverability problem for non-deleting rule
sets [BDK+12].
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Lemma 3 (undecidability of compatibility). The compatibility problem is
undecidable for non-deleting rule sets and positive constraints9.

Proof. The statement follows immediately from the undecidability of the cover-
ability problem for non-deleting rule sets [BDK+12]. Assume the compatibility
problem for non-deleting rule sets R and positive constraints ∃C is decidable.
Then, the coverability problem for non-deleting rule sets R, the empty start
graph and final graph C is decidable: By definition of compatibility and cover-
ing, R is ∃C-compatible ⇐⇒ there is a transformation ∅ ⇒∗R C ′.C ′|=∃C ⇐⇒
there is a transformation ∅ ⇒∗R C ′.C ′ w C10 i.e., there is a covering. 2

Fortunately, the compatibility problem is semi-decidable for arbitrary rule sets
and arbitrary constraints.

Lemma 4 (semi-decidability of compatibility). For every rule set R and
every condition d, R-compatibity of d is semi-decidable.

9 A rule % = 〈p, ac〉 with plain rule p = 〈L ←↩ K ↪→ R〉 is non-deleting if L ∼= K.
A condition of the form ∃C is positive.

10 H w G if there is an injectve morphism from G to H. Obviously, H w G iff H |= ∃G.
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Construction 4.

Input: rule set R, proper condition d, maxRound ∈ N ∪ {∞}
Output: true, R is d-compatible throws UndecidedException;

T (a, 0)← ∅, i, j ← 1; // initialize

/* Construct M∃ (d),M@ (d),M(d) */

for a ∈M∃ (d) do
repeat

/* Construct the set of transformations A⇒ C′ of length i

*/

t(a, i)← constructTrafo(a,R, i);
T (a, i)← T (a, i− 1) ∪ t(a, i);
i← i+ 1;
if i ≥ maxRound then

return throws UndecidedException;

/* If termination is requested, we cannot decide */

end

until C ′ |= ∃ a;
/* until a repairing transformation is found */

end
for a ∈M@ (d) do

repeat
/* . . .. */

until A′ |= @ a;

end
return true;
/* for all a ∈M(d) a repairing transformation was found */

Proof. The algorithm either returns true, provided R is d-compatible, or ter-
minates with an exception, i.e. it is semi-decidable. 2

4 Related concepts

In this section, we present some related concepts on rule-based graph repair.
For the related problem of model repair, there is a wide variety of differernt
approaches. We consider only selected model repair approaches. For a more
sophisticated survey on different model repair techniques, and a feature-based
classfication of these approaches, see [MTC17].

The notion rule-based repair is used in different meanings. In most cases [NKR17],
[HS18], a rule set is derived from (a set of) constraint(s) and a repair algo-
rithm/program is constructed from the rule set. In some cases (e.g., this paper),
a rule set and a constraint are given as input and a repair program is constructed
from the rule set.
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In [NKR17], a rule-based approach to support the modeler in automatically
trimming and completing EMF models is presented. For that, repair rules are
automatically generated from multiplicity constraints imposed by a given meta-
model. The rule schemes are carefully designed to consider the EMF model
constraints defined in [BET12].

In [HS18], given a graph constraint, we derive a rule set R(d) from the constraint
d and try to find a repair program using this rule set. The repair program is
constructed, to repair all graphs. In this paper, we use programs with interface
[Pen09] with selection and unselection of parts, instead of markings as in [HS18].
In this paper, given a rule set and graph constraint, we try to find a repair
program based on the rule set. The repair program in [HS18], and an R(d)-
based repair program for d are equal.

In [SLO19], a logic-based incremental approach to graph repair is presented,
generating a sound and complete (upon termination) overview of least changing
repairs. The state-based graph repair algorithm takes a graph and a graph con-
straint as inputs and returns a set of graph repairs. In [SLO19], one has similar
repairs for similar graphs. But for each graph, one has to compute the repair.

In [TOLR17], a designer can specify a set of so-called change-preserving rules,
and a set of edit rules. Each edit rule, which yields to an inconsistency, is then
repaired by a set of repair rules. The construction of the repair rules is based on
the complement construction. It is shown, that a consistent graph is obtained by
the repair program, provided that each repair step is sequentielly independent
from each following edit step, and each edit step can be repaired. The repaired
models are not necessarily as close as possible to the original model.

In [CCYW18], a rule-based approach for graph repair is presented. Given a set
of rules, and a graph, they use this set of rules, to handle different kinds of
conditions, i.e., incompleteness, conflicts and redudancies. The rules are based
on seven different operations, and are not defined in the framework of the DPO-
approach. They look for the best repair, which is based on the “graph edit
distance”.

5 Conclusion

In [HS18], the repair programs are formed from rules derived from the given
condition. They were constructed to be maximally preserving, i.e. to preserve
nodes as much as possible. In this paper, we consider rule-based repair where
the repair programs are constructed from a given set of small rules and a given
condition. In general, we do not get maximally preserving repair programs, be-
cause the given rules may be not maximally preserving. The main problem is
to restrict rule application to a certain context. This is done by programs with
interface [Pen09].

It depends on the given set of rules whether we obtain a repair program.
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(1) Whenever the rule set is compatible with the proper condition, a rule-based
repair program can be constructed.

(2) The compatibility problem is undecidable for non-deleting rule sets and pos-
itive constraints and semi-decidable for arbitrary rule sets and arbitrary
constraints.

Further topics are

(1) Rule-based repair programs for all satisfiable conditions, i.e. conditions with
conjunctions and disjunctions.

(2) Characterization of rule-based repair programs. We will look for rule-based
repair programs (for classes of graphs) with some quality metrics for the
repair programs, e.g. minimal number of repair steps, maximal preservation
of nodes and edges, minimal number of deletions / changes, . . .. For this
purpose, we have to restrict the classes of graphs in consideration, e.g., to
graphs with bounded node degree.

(3) Rule-based repair programs for typed attributed graphs and EMF-models,
i.e., typed, attributed graphs satisfying some constraints [NKR17].

(4) An implementation of the rule-based graph repair approach.
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BET12. Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal founda-
tion of consistent emf model transformations by algebraic graph transfor-
mation. Software and System Modeling, 11(2):227–250, 2012.

CCYW18. Yurong Cheng, Lei Chen, Ye Yuan, and Guoren Wang. Rule-based graph
repairing: Semantic and efficient repairing methods. In 34th IEEE Interna-
tional Conference on Data Engineering, ICDE 2018,, pages 773–784, 2018.

EEGH15. Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph
and Model Transformation - General Framework and Applications. Mono-
graphs in Theoretical Computer Science. Springer, 2015.

EEPT06. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of Algebraic Graph Transformation. EATCS Monographs of The-
oretical Computer Science. Springer, 2006.

HP01. Annegret Habel and Detlef Plump. Computational completeness of pro-
gramming languages based on graph transformation. In Foundations of
Software Science and Computation Structures (FOSSACS 2001), volume
2030 of Lecture Notes in Computer Science, pages 230–245, 2001.

63



HP09. Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level
transformation systems relative to nested conditions. Mathematical Struc-
tures in Computer Science, 19:245–296, 2009.

HS18. Annegret Habel and Christian Sandmann. Graph repair by graph programs.
In Graph Computation Models (GCM 2018), volume 11176 of Lecture Notes
in Computer Science, pages 431–446, 2018.

MTC17. Nuno Macedo, Jorge Tiago, and Alcino Cunha. A feature-based classifica-
tion of model repair approaches. IEEE Trans. Software Eng., 43(7):615–
640, 2017.

NEF03. Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Con-
sistency management with repair actions. In Software Engineering, pages
455–464. IEEE Computer Society, 2003.

NKR17. Nebras Nassar, Jens Kosiol, and Hendrik Radke. Rule-based repair of
emf models: Formalization and correctness proof. In Graph Computa-
tion Models (GCM 2017), 2017. https://www.uni-marburg.de/fb12/

arbeitsgruppen/swt/forschung/publikationen/2017/NKR17.pdf.
Pen09. Karl-Heinz Pennemann. Development of Correct Graph Transformation

Systems. PhD thesis, Universität Oldenburg, 2009.
PP13. Christopher M. Poskitt and Detlef Plump. Verifying total correctness of

graph programs. Electronic Communications of the EASST, 61, 2013.
RAB+18. Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Habel, and

Grabriele Taentzer. Translating essential OCL invariants to nested graph
constraints for generating nstances of meta-models. Science of Computer
Programming, 152:38–62, 2018.

SLO19. Sven Schneider, Leen Lambers, and Fernando Orejas. A logic-based incre-
mental approach to graph repair. In Fundamental Approaches to Software
Engineering - (FASE 2019), volume 11424 of Lecture Notes in Computer
Science, pages 151–167, 2019.

TOLR17. Gabriele Taentzer, Manuel Ohrndorf, Yngve Lamo, and Adrian Rutle.
Change-preserving model repair. In Fundamental Approaches to Software
Engineering (ETAPS 2017), volume 10202 of Lecture Notes in Computer
Science, pages 283–299, 2017.

64



Sesqui-Pushout Rewriting: Concurrency,
Associativity and Rule Algebra Framework?

Nicolas Behr[0000−0002−8738−5040]
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Abstract. Sesqui-pushout (SqPO) rewriting is a variant of transforma-
tions of graph-like and other types of structures that fit into the frame-
work of adhesive categories where deletion in unknown context may be
implemented. We provide the first account of a concurrency theorem
for this important type of rewriting, and we demonstrate the additional
mathematical property of a form of associativity for these theories. As-
sociativity may then be exploited to construct so-called rule algebras (of
SqPO type), based upon which in particular a universal framework of
continuous-time Markov chains for stochastic SqPO rewriting systems
may be realized.

Keywords: Sesqui-Pushout rewriting · adhesive categories · rule alge-
bras · stochastic rewriting systems · continuous-time Markov chains.

1 Motivation and relation to previous works

The framework of Sesqui-Pushout (SqPO) rewriting has been introduced rela-
tively recently in [16] as a novel alternative to the pre-existing algebraic graph
transformation frameworks known as Double-Pushout (DPO) [23,25,17,34] and
Single-Pushout (SPO) rewriting [32,35,38]. In the setting of the rewriting of
graph-like structures, the distinguishing feature of the aforementioned DPO-
type rewriting is that the deletion of vertices with incident edges is only possible
if the incident edges are explicitly deleted via the application of the rewriting
rule. In contrast, in both the SqPO and the SPO rewriting setups, “deletion in
unknown context” is implementable. Thus for practical applications of rewriting,
in particular in view of the modeling of stochastic rewriting systems, the S(q)PO
rewriting semantics provide an important additional option for the practition-
ers, and will thus in particular complement the existing DPO-type associative
rewriting and rule algebra framework as introduced in [3,7]. Referring the in-
terested readers to [36] for a recent review and further conceptual details of the
three approaches, suffice it here to quote that SqPO and SPO rewriting via linear

? This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Sk lodowska-Curie grant agree-
ment No 753750.
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rules (to be defined in the following) and along monomorphic matches effectively
encode the same semantics of rewriting. We chose (by the preceding argument
without loss of expressivity) to develop the theory of associative rewriting within
the SqPO rather than the SPO setting, since the SqPO framework bears cer-
tain close technical similarities to the DPO rewriting framework, which proved
crucial in finding a strategy for the highly intricate proofs of the concurrency
and associativity theorems presented in this paper. While it is well-known (see
e.g. Section 5.1 of [16]) that DPO- and SqPO-type semantics coincide for certain
special classes of linear rules (essentially rules that do not delete vertices), and
while these cases might provide some valuable cross-checks of technical results
to the experts, SqPO-type semantics is in its full generality a considerably more
intricate variant of semantics due to its inherent “mixing” of pushouts with final
pullback complements. It should further be noted that we must impose a set of
additional assumptions on the underlying adhesive categories (see Assumption 1)
in order to ensure certain technical properties necessary for our concurrency and
associativity theorems to hold. To the best of our knowledge, apart from some
partial results in the direction of developing a concurrency theorem for SqPO-
type rewriting in [16,36,15], prior to this work neither of the aforementioned
theorems had been available in the SqPO framework.

Associativity of SqPO rewriting theories plays a pivotal role in our develop-
ment of a novel form of concurrent semantics for these theories, the so-called
SqPO-type rule algebras. Previous work on associative DPO-type rewriting the-
ories [3,5,7] (see also [8]) has led to a category-theoretical understanding of asso-
ciativity that may be suitably extended to the SqPO setting. In contrast to the
traditional and well-established formalisms of concurrency theory for rewriting
systems (see e.g. [42,26,24,15] for DPO-type semantics and [16,15] for a notion
of parallel independence and a Local Church-Rosser theorem for SqPO-rewriting
of graphs), wherein the focus of the analysis is mostly on derivation traces and
their sequential independence and parallelism properties, the focus of our rule-
algebraic approach differs significantly: we propose instead to put sequential
compositions of linear rules at the center of the analysis (rather than the deriva-
tion traces), and moreover to employ a vector-space based semantics in order to
encode the non-determinism of such rule compositions. It is for this reason that
the concurrency theorem plays a quintessential role in our rule algebra frame-
work, in that it encodes the relationship between sequential compositions of lin-
ear rules and derivation traces, which in turn gives rise to the so-called canonical
representations of the rule algebras (see Section 4). This approach in particular
permits to uncover certain combinatorial properties of rewriting systems that
would otherwise not be accessible. While undoubtedly not a standard technique
in the realm of theoretical computer science, certain special examples of rule
algebras are ubiquitous in many areas of applied mathematics and theoretical
physics. The most famous such example concerns the so-called Heisenberg-Weyl
algebra (see e.g. [9,10,11]), which is well-known to possess a representation in
terms of the formal multiplication operator x̂ and the differentiation operator ∂x
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on formal power series in the formal variable x, with x̂ xn := xn+1 and ∂x acting
as the derivative. Referring the interested readers to Example 2 (see also [7,4])
for the precise details, it transpires that the monomials xn (for n a non-negative
integer) are found to be in one-to-one correspondence with graph states asso-
ciated to n-vertex discrete graphs, while x̂ and ∂x may be understood as the
canonical representations of the discrete graph rewriting rules of creation and
deletion of vertices. It will thus come as no surprise that considering more gen-
eral rewriting rules than those of discrete graphs will lead to a very substantial
generalization of these traditional results and techniques.

From the very beginning of the development of the rule algebra framework [3],
one of our main motivations has been the study of stochastic rewriting systems,
whence of continuous-time Markov chains (CTMCs) based upon DPO- or SqPO-
type rewriting rules. While previously in particular applications of stochastic
SqPO-type rewriting systems have played a role predominantly in highly spe-
cialized settings such as e.g. the formulation of the biochemical reaction system
framework known as Kappa [20,21,19,18], our novel approach of formulating
such systems in terms of associative unital rule algebras may very well open this
versatile modeling technique to many other areas of applied research. In conjunc-
tion with our previously developed DPO-type framework in [7], one could argue
that our stochastic mechanics frameworks are in a certain sense a universal con-
struction, in that once a semantics for associative unital rewriting is provided,
the steps necessary to obtain the associated CTMCs are clearly formalized. It is
interesting to compare the traditional approaches to stochastic rewriting systems
with CTMC semantics such as [31,30] in the DPO- and [29] in the SPO-settings
to our present reformulation in terms of rule algebras. The former approaches
yet again tend to focus on derivation traces of stochastic rewriting systems,
while our rule-algebraic approach aims to extract dynamical information from
stochastic rewriting systems via analysis of certain combinatorial relationships
(so-called nested commutators) of the infinitesimal generator of the CTMC with
the (pattern-counting) observables of the system. It is via these relations that
one may in certain cases obtain exact closed-form solutions for such dynamical
data (see e.g. Section 6). It would nevertheless be an intriguing avenue for fu-
ture research to understand better the finer points of the “traditional” stochastic
rewriting frameworks (which also feature sophisticated developments in terms
of probabilistic model-checking and various types of stochastic logics), and fur-
thermore whether or not rule-algebraic techniques might be of interest also in
more general stochastic rewriting semantics such as probabilistic (timed) graph
transformations [33,40].

Structure of the paper: In Section 2, some category-theoretical background
material is provided. The key results of associativity and concurrency of SqPO
rewriting are presented in Section 3, followed by the construction of SqPO-type
rule algebras in Section 4. The second part of the paper contains the stochas-
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tic mechanics framework (Section 5) as well as a practical application example
(Section 6). Technical proofs are situated in the Appendix.

2 Background: adhesive categories and final pullback
complements

We recall some of the elementary definitions and properties related to the notions
of adhesive categories, upon which our framework will rely.

Definition 1 ([34]). A category C is said to be adhesive if

(i) C has pushouts along monomorphisms,
(ii) C has pullbacks,

(iii) pushouts along monomorphisms are van Kampen (VK) squares.

The last property entails that in a commutative cube as in (1) on the left where
the bottom square is a pushout, this square is a VK square if and only if whenever
the back and right vertical faces are pullbacks, then the top square is a pushout
if and only if the front and left vertical squares are pullbacks.

A′ C ′

D′ B′

A C

D B

A B1

B2 D

E

b2

b1

(A) c1 d1

c2

d2

x

P
B A

C D
Q

x

w

yc (B)

a

b

d

z

w∗

(1)

Definition 2 (Finitary categories [12]). A category C is said to be finitary if
every object X ∈ obj(C) has only finitely many subobjects (i.e. if there only exist
finitely many monomorphisms Y → X up to isomorphism for every X ∈ obj(C)).
For every adhesive category C, the restriction to finite objects of C defines a full
subcategory Cfin called the finitary restriction of C.

Theorem 1 (Finitary restrictions; [12], Thm. 4.6). The finitary restriction
Cfin of any adhesive category C is a finitary adhesive category.

Adhesive categories have been introduced and advocated in [34] as a frame-
work for rewriting due to their numerous useful properties, some of which are
listed in Appendix A for the reader’s convenience. One of the central concepts
in the theory of SqPO rewriting is the following:

Definition 3 (Final Pullback Complement (FPC); [16,36]). Let C be a
category. Given a commutative diagram as in (1) on the right, a pair of mor-
phisms (d, b) is a final pullback complement (FPC) of a pair (c, a) if (i) (a, b) is
a pullback of (c, d) (i.e. if the square marked (B) is a pullback square), and (ii)
for each collection of morphisms (x, y, z, w) as in (1) on the right, where (x, y)
is pullback of (c, z) and where a◦w = x, there exists a unique morphism w∗ with
d ◦ w∗ = z and w∗ ◦ y = b ◦ w.
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For our associative rewriting framework, it will be crucial to work with a
category in which (i) FPCs are guaranteed to exist when constructing them for
composable pairs of monomorphisms, and (ii) monomorphisms are stable under
FPCs, i.e. FPCs of pairs of monomorphisms are given by pairs of monomor-
phisms (cf. Lemma 3 of Appendix A). To the best of our knowledge, the ques-
tion of which categories possess this property has not yet been investigated to
quite the level of generality as analogous classification problems in the case of
DPO rewriting, even though there does exist a large body of work on classes of
categories that admit SqPO constructions (some of which coincide with adhesive
categories) [16,39,36,14,37]. Within these classes, according to [13,14] guarantees
for the existence of FPCs may be provided for categories that possess a so-called
M-partial map classifier. However, it appears to be an open question of whether
the statement of Lemma 3 on stability of monomorphisms under FPCs may
be generalized to the setting of M-adhesive categories, where M is a class of
monomorphisms. Relaying such questions to future work, we refer to Lemma 4 of
Appendix A for a well-known instantiation of a suitable categorical setting from
the SqPO literature in the form of the category FinGraph of finite directed
multigraphs, which also serves to illustrate the FPC construction.

Assumption 1. C is an adhesive category in which all FPCs along monomor-
phisms exist, and in which monomorphisms are stable under FPCs.

3 Sesqui-Pushout rewriting

We will now develop a framework for Sesqui-Pushout (SqPO) rewriting in the set-
ting of a category C satisfying Assumption 1, in close analogy to the framework
of associative Double-Pushout (DPO) rewriting as introduced in [7,8]. Unlike in
the general setting of SqPO rewriting, we will thus be able to not only prove
a concurrency theorem (Section 3.1), but also an associativity property of the
SqPO-type rule composition (Section 3.2).

3.1 Concurrent composition and concurrency theorem

For reasons that will become more transparent when introducing the SqPO-type
rule algebra framework starting from Section 4, we opt for a non-standard con-
vention of reading spans of monomorphisms “from right to left” (rather than the
traditional “left to right”), which is why we will speak of “input” and “output”
of rules rather than “left-” and “right hand sides” to avoid confusion.

Definition 4 (SqPO-type rewriting; compare [16], Def. 4). Let C be an
adhesive category satisfying Assumption 1. Denote by Lin(C) the set of (isomor-
phism classes1 of) so-called linear productions, defined as the set of spans of

1 Two productions O ← K → I and O′ ← K′ → I ′ are defined to be isomorphic if
there exist isomorphisms I → I ′, K → K′ and O → O′ that make the obvious dia-
gram commute; we will not distinguish between isomorphic productions. As natural
in this category-theoretical setting, the constructions presented in the following are
understood as defined up to such isomorphisms.
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monomorphisms,

Lin(C) := {p ≡ (O
o←− K i−→ I) | o, i ∈ mono(C)}�∼= . (2)

Given an object X ∈ obj(C) and a linear production p ∈ Lin(C), we denote
the set of SqPO-admissible matches Msq

p (X) as the set of monomorphisms m :
I → X. Then the diagram below is constructed by taking the final pullback
complement marked FPC followed by taking the pushout marked PO:

O K I

X ′ K X

m∗

o i

kPO FPC m

o′ i′

(3)

We write pm(X) := X ′ for the object “produced” by the above diagram. The
process is called (SqPO-) derivation of X along production p and admissible

match m, and denoted pm(X)
SqPO⇐===
p,m

X.

Next, a notion of sequential composition of productions is introduced:

Definition 5 (SqPO-type concurrent composition). Let p1, p2 ∈ Lin(C)
be two linear productions. Then an overlap of the output object O1 of p1 with
the input object I2 of p2, encoded as a span m = (I2

m2←−−M21
m1−−→O1) with

m1,m2 ∈ mono(C), is called an SqPO-admissible match of p2 into p1, denoted
m ∈ Msq

p2(p1), if the square marked POC in (4) is constructible as a pushout

complement (with the cospan I2
n2−→ N21

n1←− O1 obtained by taking the pushout
marked PO). In this case, the remaining parts of the diagram are formed by
taking the final pullback complement marked FPC and the pushouts marked PO:

O2 K2 I2 M21 O1 K1 I1

O21 K2 N21 K1 I21

K21

n∗2

o2 i2

k2PO n2
FPC

m2 m1

PO n1
POC

o1 i1

k1 PO n∗1

o′2 i′2 o′1 i′1

PBi′′2
o21=o

′
2◦i′′2

o′′1
i21=o

′′
1 ◦i′1

(4)

If m ∈ Msq
p2(p1), we write p2

m^ p1 ∈ Lin(C) for the composite of p2 with p1 along
the admissible match m, defined as

p2
m^ p1 ≡ (O21

o21←−− K21
i21−−→ I21) . (5)

Due to stability of monomorphisms under pushouts, pullbacks and FPCs in the
setting of a category satisfying Assumption 1, all morphisms in Definitions 4
and 5 are guaranteed to be monomorphisms, whence in particular the span

p2
m^ p1 is a span of monomorphisms and thus indeed an element of Lin(C).
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At first sight, it might appear irritating that in the definition of the SqPO-
type rule composition, the right hand part of (4) involves a pushout complement
(marked POC), while the left hand part of the diagram in (4) features a final
pullback complement (marked FPC). Intuitively, considering the case of graph
rewriting for concreteness, in a given sequential application of two productions,
while the application of the first production may lead to implicit edge deletions,
the second production is incapable of having any causal interaction with edges
deleted by the first production. In contrast, the second production may in a given
sequential application very well implicitly delete edges present in the output
object of the first production, which explains the presence of the FPC in the
defining equation (4). We refer the interested readers to [5] for further intuitions
attainable in terms of so-called rule diagrams for presenting rule compositions.
The justification for Definition 5 in the general case is provided via the following
concurrency theorem. Even though at least in certain specialized settings the
“synthesis” part of this theorem has been foreseen already in [36] (where it is
also commented that a full concurrency theorem for SqPO rewriting might be
attainable), the following result appears to be new.

Theorem 2 (SqPO-type Concurrency Theorem). Let C be an adhesive
category satisfying Assumption 1. Let p1, p2 ∈ Lin(C) be two linear rules and
X0 ∈ ob(C) an object.

– Synthesis: Given a two-step sequence of SqPO derivations

X2
SqPO⇐===
p2,m2

X1
SqPO⇐===
p1,m1

X0 ,

with X1 := p1m1
(X0) and X2 := p2m2

(X1), there exists a SqPO-composite

rule q = p2
n^ p1 for a unique n ∈Msq

p2(p1), and a unique SqPO-admissible
match n ∈ Msq

q (X), such that

qn(X)
SqPO⇐===
q,n

X0 and qn(X0) ∼= X2 .

– Analysis: Given an SqPO-admissible match n ∈Msq
p2(p1) of p2 into p1 and

an SqPO-admissible match n ∈ Msq
q (X) of the SqPO-composite q = p2

n^ p1
into X, there exists a unique pair of SqPO-admissible matches m1 ∈ Msq

p1(X0)
and m2 ∈ Msq

p2(X1) with X1 := p1m1
(X0) such that

X2
SqPO⇐===
p2,m2

X1
SqPO⇐===
p1,m1

X0 and X2
∼= qn(X) .

Proof. See Appendix B.1.

3.2 Composition and associativity

The following theorem establishes that in analogy to the DPO rewriting setting
of [7], also the sesqui-pushout variant of rule compositions possesses a form of
associativity property.
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Theorem 3 (SqPO-type associativity theorem). Let C be an adhesive cat-
egory satisfying Assumption 1. Then the SqPO-composition operation .

.^ . on
linear productions of C is associative in the following sense: given linear pro-
ductions p1, p2, p3 ∈ Lin(C), there exists a bijective correspondence between pairs
of SqPO-admissible matches (m21,m3(21)) and (m32,m(32)1) such that

p3
m3(21)

^
(
p2

m21^ p1

)
∼=
(
p3

m32^ p2

) m(32)1

^ p1 . (6)

Proof. Intuitively, the associativity property in the SqPO case manifests itself
in a form entirely analogous to the DPO case [7], whereby the data provided
along the path highlighted in orange below permits to uniquely compute the data
provided along the path highlighted in blue and vice versa (with both sets of over-
laps computing the same “triple composite” production that is encoded as the
composition of the three spans in the bottom front row):

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′2 N21 K ′1 I21

O32 K ′3 N32 K ′′2 I32 M(32)1 O1 K1 I1

O321 K3
N3(21) K2

N(32)1 K1 I321

(7)

See Appendix B.2 for the precise technical details of the proof.

We invite the interested readers to compare the SqPO-type constructions
presented here against those contained in the extended journal version [8] of [7]
for the DPO framework, since this might lend some intuitions on the otherwise
very abstract nature of the proofs to the experts.

4 From associativity to SqPO-type rule algebras

For the rule algebra constructions, we will require an additional structure:

Definition 6 (Initial objects). An object ∅ ∈ obj(C) of some category C is
said to be a strict initial object if for every object X ∈ obj(C), there exists a
unique morphism ∅→ X, and if any morphism X → ∅ must be an isomorphism.

For example, the category Graph possesses a strict initial object (the empty
graph). For the experts, it appears worthwhile noting the following result:

Lemma 1 (Extensive categories; [34], Lem. 4.1). An adhesive category C
is an extensive category2 if and only if it possesses a strict initial object.

Assumption 2 (Prerequisites for SqPO-type rule algebras). We assume
that C is an adhesive category satisfying Assumption 1, and which is in addition
finitary and possesses a strict initial object ∅ ∈ obj(C).
2 For the purposes of this paper, it suffices to consider the “if” direction as a definition

of extensivity, since the relevant structure to our constructions is that of having a
strict initial object (see e.g. [34] for the precise definition of extensivity).
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Definition 7 (SqPO-type rule algebras). Let δ : Lin(C) → RC be defined
as an isomorphism from Lin(C) to the basis of a free R-vector space RC ≡
(RC,+, ·), such that3

RC := spanR({δ(p) | p ∈ Lin(C)}) . (8)

In order to clearly distinguish between elements of Lin(C) and basis vectors of
RC, we introduce the notation

(O
p⇐ I) := δ

(
O

o←− K i−→ I
)
. (9)

Define the SqPO rule algebra product �RC
on a category C that satisfies As-

sumption 2 as the binary operation

�RC
: RC ×RC → RC : (R1, R2) 7→ R1 �RC

R2 , (10)

where for two basis vectors Ri = δ(pi) encoding the linear rules pi ∈ Lin(C)
(i = 1, 2),

R2 �RC
R1 :=

∑

m∈Msq
p2

(p1)

δ
(
p2

m^ p1
)
. (11)

The definition is extended to arbitrary (finite) linear combinations of basis vec-
tors by bilinearity, whence for pi, pj ∈ Lin(C) and αi, βj ∈ R,

(∑

i

αi · δ(pi)
)
�RC


∑

j

βj · δ(pj)


 :=

∑

i,j

(αi ·βj) · (δ(pi)�RC
δ(pj)) . (12)

We call RsqC ≡ (RC,�RC
) the SqPO-type rule algebra over the finitary

adhesive and extensive category C.

Example 1. Let C = FinGraph be the category of finite directed multigraphs,
with ∅ the empty graph. Then with � ≡ �RC

, we find for example

δ(∅←↩ ∅ ↪→ )� δ( ←↩ ∅ ↪→ ∅)

=
∑

m∈{( ←↩∅↪→ ),( ←↩ ↪→ ),
( ←↩ ↪→ )}

δ
(

(∅←↩ ∅ ↪→ )
m^ ( ←↩ ∅ ↪→ ∅)

)

= δ( ←↩ ∅ ↪→ ) + 2δ( ←↩ ∅ ↪→ ∅) .

(13)

The result of the composition thus captures the combinatorial insight that there
are two contributions that evaluate to an isomorphic rule algebra element. More

3 Recall that for a set A, the notation spanR({e(a) | a ∈ A}) entails to “take the R-
span over basis vectors e(a) indexed by elements of A”, i.e. elements of the resulting
R-vector space are (finite) linear combinations of the basis vectors e(a) with real
coefficients .
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generally, one finds the following structure of compositions of rule algebra ele-
ments based upon “discrete” graph rewriting rules: letting •] n denote the n-
vertex graph without edges (for n ≥ 0), one finds (for p, q, r, s ≥ 0)

δ(•] p ←↩ ∅ ↪→ •] q)� δ(•] r ←↩ ∅ ↪→ •] s)

=

min(q,r)∑

k=0

k!

(
q

k

)(
r

k

)
δ(•] (p+r−k) ←↩ ∅ ↪→ •] (q+−k)) .

(14)

This result is further interpreted in Example 2.

Theorem 4 (Properties of RsqC ). For every category C satisfying Assump-
tion 2, the associated SqPO-type rule algebra RsqC ≡ (RC,�RC

) is an associative
unital algebra, with unit element R∅ := (∅⇐ ∅). (Proof: Appendix B.3)

For the unital and associative SqPO-type rule algebras, one may provide a
notion of representations in analogy to the DPO-type case (compare [3,7]):

Definition 8 (Canonical representation of RsqC ). Let C be a category sat-
isfying Assumption 2, with a strict initial object ∅ ∈ ob(C), and let RsqC be

its associated rule algebra of SqPO type. Denote by Ĉ the free R-vector space
spanned by basis vectors |X〉 indexed by isomorphism classes of objects,

Ĉ := spanR ({ |X〉|X ∈ obj(C)∼=}) ≡ (Ĉ,+, ·) . (15)

Then the canonical representation ρsqC : RsqC → EndR(Ĉ) of RsqC is defined as a

morphism from the SqPO-type rule algebra RsqC to endomorphisms of Ĉ, with

ρsqC (δ(p)) |X〉 :=

{∑
m∈Msqp (X) |pm(X)〉 if Msq

p (X) 6= ∅
0Ĉ otherwise,

(16)

and extended to arbitrary elements of RsqC and of Ĉ by linearity.

Example 2. Extending Example 1, letting ρ ≡ ρsqFinGraph, note first that by
definition for all G ∈ obj(FinGraph), |G〉 = ρ(δ(G←↩ ∅ ↪→ ∅)) |∅〉. With

D̂ := ρ(δ(∅←↩ ∅ ↪→ )) , X̂ := ρ(δ( ←↩ ∅ ↪→ ∅)) , |n〉 := |•] n〉 (n ≥ 0) , (17)

as a consequence of (14) of Example 1 one may verify that

D̂ |0〉 = 0 ̂FinGraph
, D̂ |n〉 = n |n− 1〉 (n > 0) , X̂ |n〉 = |n+ 1〉 . (18)

In other words, the data of (17) and (18) furnishes a representation of the famous
Heisenberg-Weyl algebra that is of fundamental importance in combinatorics and
physics (see e.g. [9,10,11]). An alternative such representation is given by the
linear operators x̂ (multiplication by x) and ∂x (derivation by x) acting on the R-
vector space spanned by monomials xn, which reproduces equations isomorphic
to (17) and (18), with ∂xx

n = nxn−1 and x̂xn = xn+1. However, the action of D̂
and X̂ is of course defined on all states |G〉 with G ∈ obj(FinGraph), so that
we may e.g. compute the following “derivative of a graph”:

D̂ | 〉 = 2 | 〉+ | 〉 (19)
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The following theorem states that ρsqC as given in Definition 8 is indeed a
homomorphism (and thus qualifies as a representation of RsqC ).

Theorem 5 (SqPO-type canonical representation). For a category C sat-

isfying Assumption 2, ρsqC : RsqC → End(Ĉ) of Definition 8 is a homomorphism
of unital associative algebras. (Proof: Appendix B.4)

5 Applications of SqPO-type rule algebras to stochastic
mechanics

In practical applications of stochastic rewriting systems, the type of rewriting
semantics presents one of the key design choices. For example, if in a given
situation a stochastic graph rewriting system should be implemented, choosing
DPO- vs. SqPO-type rewriting entails two entirely different semantics in terms
of the behavior of vertex deletion rules: in the former case, vertices may only be
deleted if also all its incident edges are explicitly deleted as well, while in the
latter case no such restriction applies (i.e. an application of a vertex deletion
rule “automatically” leads to the deletion of all incident edges). Evidently, such
fundamentally different behavior at the level of rewriting rules will also have
strong influence on the dynamical behavior of the associated stochastic rewrit-
ing systems, whence it is of considerable practical interest to have a universal
implementation of such systems available in both formalisms. We begin by spe-
cializing the general definition of continuous-time Markov chains (see e.g. [41,1])
to the setting of SqPO-type rewriting systems in close analogy to [3,6,7].

Definition 9 (Continuous-time Markov Chains (CTMCs); compare [7],
Def. 7.1). Let C be a category satisfying Assumption 2, and which in addi-

tion possesses a countable set of isomorphism classes of objects obj(C)∼=. Let Ĉ
denote the free R-vector space introduced in Definition 8. We define the space
Prob(C) as the space of sub-probability distributions in the following sense:

Prob(C) :=



|Ψ〉 =

∑

o∈obj(C)∼=

ψo |o〉

∣∣∣∣∣∣
∀o ∈ obj(C)∼= : ψo ∈ R≥0 ∧

∑

o∈obj(C)∼=

ψo ≤ 1



 (20)

Let Stoch(C) := EndR(Prob(C)) be the space of endomorphisms of Prob(C),
with elements referred to as sub-stochastic operators. Then a continuous-time
Markov chain (CTMC) is specified in terms of a tuple of data (|Ψ(0)〉 , H),
where |Ψ(0)〉 ∈ Prob(C) is the initial state, and where H ∈ EndR(SC) is the
infinitesimal generator or Hamiltonian of the CTMC (with SC the space of real-
valued sequences indexed by elements of obj(C)∼= and with finite coefficients). H
is required to be an infinitesimal (sub-)stochastic operator, which entails that for
H ≡ (ho,o′)o,o′∈obj(C)∼= and for all o, o′ ∈ obj(C)∼=,

(i) ho,o ≤ 0 , (ii)∀o 6= o′ : ho,o′ ≥ 0 , (iii)
∑

o′

ho,o′ = 0 . (21)
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Then this data encodes the evolution semi-group E : R≥0 → Stoch(C) as the
(point-wise minimal non-negative) solution of the Kolmogorov backwards or
master equation:

d
dtE(t) = HE(t) , E(0) = 1Stoch(C) ⇒ ∀t, t′ ∈ R≥0 : E(t)E(t′) = E(t+ t′) (22)

Consequently, the time-dependent state |Ψ(t)〉 of the system is given by

∀t ∈ R≥0 : |Ψ(t)〉 = E(t) |Ψ(0)〉 . (23)

An important technical aspect of the above definition of CTMCs is the definition
of the relevant space of (sub-)probability distributions in interaction with the
definition of the infinitesimal generator H and of the space SC. Some remarks on
this interaction and a short explanation of the relevant mathematical concepts
are provided in Appendix B.5.

Our main approach in studying CTMCs based on rewriting systems will
consist in analyzing the dynamical statistical behavior of so-called observables:

Definition 10 (Observables; [7], Def. 7.1). Let OC ⊂ EndR(SC) denote the
space of observables, defined as the space of diagonal operators4,

OC := {O ∈ EndR(SC) | ∀X ∈ obj(C)∼= : O |X〉 = ωO(X) |X〉 , ωO(X) ∈ R} .
(24)

We furthermore define the so-called projection operation 〈| : SC → R via ex-

tending by linearity the definition of 〈| acting on basis vectors of Ĉ,

∀X ∈ obj(C)∼= : 〈 |X〉 := 1R . (25)

These definitions induce a notion of correlators of observables (also referred to
as (mixed) moments), defined for O1, . . . , On ∈ OC and |Ψ〉 ∈ Prob(C) as

〈O1, . . . , On〉|Ψ〉 := 〈|O1, . . . , On |Ψ〉 =
∑

X∈obj(C)∼=

ψX · ωO1
(X) · · ·ωOn(X) . (26)

The precise relationship between the notions of CTMCs and SqPO-type
rewriting rules as encoded in the corresponding SqPO-type rule algebra for-
malism is established in the form of the following theorem, where in particular
the notion of observables is quite different in nature to the DPO-type analogon
(compare Thm. 7.12 of [7]). This result is the first-of-its-kind universal definition
of SqPO-type stochastic rewriting systems with “mass-action semantics” (where
activities of productions are proportional to their number of admissible matches
in a given system state).

Theorem 6 (SqPO-type stochastic mechanics framework). Let C be a

category satisfying Assumption 2. Let {(Oj
pj⇐ Ij) ∈ RsqC }j∈J be a (finite) set of

4 Depending on the concrete case, the eigenvalue ωO(X) in O |X〉 = ωO(X) |X〉 may
e.g. coincide with the number of occurrences of a pattern in the object X (see also
Appendix B.5).
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rule algebra elements, and {κj ∈ R≥0}j∈J a collection of non-zero parameters
(called base rates). Then one may construct the Hamiltonian H of the associated
CTMC from this data according to

H := Ĥ + H̄ , Ĥ :=
∑

j∈J
κj · ρsqC

(
Oj

pj⇐ Ij

)
, H̄ := −

∑

j∈J
κj · OsqIj . (27)

Here, the notation OsqM for arbitrary objects M ∈ obj(C) denotes the observables
(sometimes referred to as motif counting observables) for the resulting CTMC
of SqPO-type, with

OsqM := ρsqC

(
δ
(
M

idM←−−M idM−−→M
))

. (28)

We furthermore have the SqPO-type jump-closure property, whereby for all

(O
p⇐ I) ∈ RsqC

〈| ρsqC (O
p⇐ I) = 〈|OsqI . (29)

Proof. See Appendix B.5.

6 Application example: a dynamical random graph model

In order to illustrate our novel SqPO-type stochastic mechanics framework, let us
consider a dynamical system evolving on the space of finite directed multigraphs.

Example 3. Let FinGraph be the finitary restriction of the category Graph
(see also Lemma 4), and denote by ∅ ∈ FinGraph the strict initial object (the
empty graph). We define a stochastic SqPO rewriting system based upon rules
encoding vertex creation/deletion (v±) and edge creation/deletion (e±):

v+ := ( ← ∅→ ∅) v− := (∅← ∅→ )

e+ := ( ← → ) e− := ( ← → )
(30)

Together with a choice of base rates ν±, ε± ∈ R≥0 and an initial state |Ψ(0)〉 ∈
Prob(FinGraph), this data defines a stochastic rewriting system with Hamil-
tonian H := Ĥ + H̄,

Ĥ = ν+V+ + ν−V− + ε+E+ + ε−E−
H̄ = −ν+O∅ − ν−O − ε+O − ε−O ,

(31)

where V± := ρsqFinGraph(δ(v±)) and E± := ρsqFinGraph(δ(e±)).

Despite the apparent simplicity of this model (which might be seen as a
paradigmatic example of a random graph model), the explicit analysis via the
stochastic mechanics framework will uncover a highly non-trivial interaction of
the dynamics of the vertex- and of the edge-counting observables. Intuitively,
since in SqPO-rewriting no conditions are posed upon vertices that are to be
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deleted, the model is expected to possess a vertex dynamics that is the one
of a so-called birth-death process. If it were not for the vertex deletions, one
would find a similar dynamics for the edge-counting observables (compare e.g.
the DPO-type rewriting model considered in [7]). However, since deletion of ver-
tices deletes all incident edges, the dynamics of the edge-counting observable is
rendered considerably more complicated, and in particular much less evident to
foresee by heuristic arguments.

In order to compute the dynamics of the vertex counting observable OV :=
O , we follow the approach of exponential moment-generating functions put for-
ward in [3,6,4] and define

MV (t;λ) := 〈| eλOV |Ψ(t)〉 , (32)

with λ a formal variable. MV (t;λ) encodes the moments of the observable OV ,
in that taking the n-th derivative of MV (t;λ) w.r.t. λ followed by setting λ→ 0
yields the n-th moment of OV . Note that we must assume the finiteness of all
statistical moments as standard in the probability theory literature in order for
MV (t;λ) to be well-posed, a property that we will in the case at hand indeed de-
rive explicitly. Referring the interested readers to [8] for further details, suffice it
here to recall the following variant of the BCH formula (see e.g. [28], Prop. 3.35),
for λ a formal variable and A,B two composable linear operators,

eλABe−λA = eadλAB =
∑

n≥0

λn

n!
ad◦nA (B) , adA(B) := AB−BA ≡ [A,B] , (33)

with the convention that ad◦0A (B) := B. The operation [., .] is typically referred
to as the commutator. We may then derive the formal evolution equation for
MV (t;λ):

∂
∂tMV (t;λ) = 〈| eλOVH |Ψ(t)〉 = 〈|

(
eλOVHe−λOV

)
eλOV |Ψ(t)〉

= 〈|
(
eadλOV H

)
eλOV |Ψ(t)〉 .

(34)

Since by definition 〈|H = 0, it remains to compute the adjoint action adOV (H)
of OV on H:

adOV (H) = ν+[OV , V+] + ν−[OV , V−] + ε+[OV , E+] + ε−[OV , E−]

= ν+V+ − ν−V−
(35)

Here, the result that [OV , E±] = 0 has a very simple intuitive meaning: in appli-
cations of the linear rules e±, the number of vertices remains unchanged, whence
the vanishing of the commutator. Combining these results with the SqPO-type
jump-closure property (cf. Theorem 6), we finally arrive at the following formal
evolution equation for MV (t;λ):

∂
∂tMV (t;λ) = ν+

(
eλ − 1

)
〈|V+eλOV |Ψ(t)〉+ ν−

(
e−λ − 1

)
〈|V−eλOV |Ψ(t)〉

(29)
= ν+

(
eλ − 1

)
〈| eλOV |Ψ(t)〉+ ν−

(
e−λ − 1

)
〈|OV eλOV |Ψ(t)〉

=
(
ν+
(
eλ − 1

)
+ ν−

(
e−λ − 1

)
∂
∂λ

)
MV (t;λ) .

(36)
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Supposing for simplicity an initial state |Ψ(0)〉 = |G0〉 (for G0 ∈ obj(Graphfin)
some graph with NV vertices and NE edges), we find that MV (0;λ) = exp(λNV ).
The resulting initial value problem may be solved in closed-form via semi-linear
normal-ordering techniques known from the combinatorics literature [22,9,11,6]
(see also [8,4]), and we obtain (for t ≥ 0)

MV (t;λ) = exp

(
ν+
ν−

(eλ − 1)(1− e−ν−t)
)(

1 + (eλ − 1)e−ν−t
)NV

. (37)

In the limit t→∞, the moment-generating function becomes that of a Poisson-
distribution (of parameter ν+/ν−), thus confirming the aforementioned intuition
that the vertex-counting observable has the dynamical behavior of a so-called
birth-death process (see e.g. [6]).

Let us consider next the dynamics of the edge-counting observable OE :=
O , where for brevity we will only consider the evolution of the mean edge
count. The calculation of the evolution equation for the expectation value of OE
simplifies to the analogue of the so-called Ehrenfest equation,

∂
∂t 〈|OE |Ψ(t)〉 = 〈|OE H |Ψ(t)〉 = 〈|

(
H OE + [OE , H]

)
|Ψ(t)〉 . (38)

Recalling that 〈|H = 0, it remains to compute the commutator [OE , H]:

[OE , H] = ν+[OE , V+] + ν−[OE , V−] + ε+[OE , E+] + ε−[OE , V−]

= ν+ · 0− ν−(E0,1
− + E1,0

− ) + ε+E+ − ε−E−
E0,1
− = ρsqFinGraph

(
δ
(

b
←

b
→

a b

))

E1,0
− = ρsqFinGraph

(
δ
(

a
←

a
→

a b

))
.

(39)

This calculation is a representative example of various effects that may occur in
rule-algebraic commutation relations: we find a zero commutator [OE , V+], indi-
cating the fact that application of the vertex creation rule V+ does not influence
the edge count. The commutators [OE , E±] = ±E± encode that application of
the edge creation/deletion rules leads to positive/negative contributions to the
edge count. Finally, the contribution of the commutator [OE , V−] = −E0,1

− −E1,0
−

is given by the representations of two rule algebra elements not originally present
in the Hamiltonian H, with the structure of the underlying linear rules indicated
by the labels a and b on the vertices (as customary in the rewriting literature).
It then remains to apply the jump-closure property (Theorem 6) together with
the identity O = OV (OV − 1) in order to obtain the evolution equation

∂
∂t 〈|OE |Ψ(t)〉 = ε+ 〈|OV (OV − 1) |Ψ(t)〉 − (ε− + 2ν−) 〈|OE |Ψ(t)〉 . (40)

Together with an initial condition such as e.g. |Ψ(0)〉 = |G0〉 for some (finite)
directed graph G0 with NV vertices and NE edges, and computing the closed-
form expression for the first contribution in (40) from our previous solution (37)
(as ∂λ(∂λ − 1)MV (t;λ) followed by setting λ→ 0), the initial value problem for
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the mean edge count evolution may be easily solved in closed form via the use
of a computer algebra software such as Maple, Mathematica or Sage. It is
also straightforward to verify that for an arbitrary initial state |Ψ(0)〉 = |G0〉,
the limit value of the mean edge count for t→∞ reads

lim
t→∞

〈|OE |Ψ(t)〉 =
ν2
+ε+

ν2
−(2ν−+ε−)

. (41)

Since the rates ν± and ε± are free parameters, the above result entails that in
this model one may freely adjust the limit value of the average vertex count as
encoded in (36) (whence ν+/ν−) as well as the limit value of the average edge
count via suitable choices of the parameters ε±. For illustration, we present some
plots of the mean edge count evolution for the case |Ψ(0)〉 = |∅〉 and various
choices of parameters in Figure 1.

� � � � �

��

���

���

���

Fig. 1. Time-evolution of 〈|OE |Ψ(t)〉 for |Ψ(0)〉 = |∅〉.

7 Conclusion and Outlook

Extending our previous work on Double-Pushout (DPO) rewriting theories as
presented in [3,7,4] to the important alternative setting of Sesqui-Pushout (SqPO)
rewriting, we provide a number of original results in the form of concurrency
and associativity theorems for SqPO rewriting theories on adhesive categories.
These fundamental results in turn permit us to formulate so-called SqPO-type
rule algebras, which play a central role in our novel universal stochastic mechan-
ics framework. We strongly believe that these contributions will provide fruitful
grounds for further developments both in theory and practice of rewriting beyond
the specialists’ communities, especially in view of static analysis techniques [2].
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A A collection of useful technical results on adhesive
categories and final pullback complements

Notational convention: Here and as throughout this paper, while evidently
category-theoretical constructions such as pushouts are only unique up to iso-
morphisms, we will typically nevertheless pick convenient representatives of the
respective isomorphism classes to simplify our notations. As standard practice in
the literature, we will thus e.g. fix the convention as in (42) to choose represen-
tatives appropriately to label the pushout along an isomorphism with “equality
arrows” (rather than keeping object labels generic and decorating the relevant
arrow with a “∼=” symbol).

Lemma 2. Let C be a category.

(i) “Single-square” lemmata (see e.g. [8], Lem. 1.7): In any category, given com-
mutative diagrams of the form

A B

A B

f

(A)

f

A A

A B

(B) g

g

A B

A C

f

(C) g

g◦f

, (42)

(a) (A) is a pushout for arbitrary morphisms f ,
(b) (B) is a pullback if and only if the morphism g is a monomorphism, and
(c) (C) is a pullback for arbitrary morphisms f if g is a monomorphism.

(ii) special adhesivity corollaries (cf. e.g. [24], Lemma 2.6): in any adhesive
category,
(a) pushouts along monomorphisms are also pullbacks, and
(b) ( uniqueness of pushout complements) given a monomorphism A ↪→ C

and a generic morphism C → D, the respective pushout complement

A → B
b
↪−→ D (if it exists) is unique up to isomorphism, and with b ∈

mono(C) (due to stability of monomorphisms under pushouts).
(iii) “Double-square lemmata”: given commutative diagrams of the shapes

A B C

A′ B′ C ′

a (1)

d

b (2)

e

c

d′ e′

Z Z ′

Y Y ′

X X ′

w (3) w′

z

v (4)

y

v′

x

(43)

then in any category C (cf. e.g. [34]):
(a) Pullback-pullback (de-)composition: If (1) is a pullback, then (1) + (2)

is a pullback if and only if (2) is a pullback.
(b) Pushout-pushout (de-)composition: If (2) is a pushout, then (1) + (2) is

a pushout if and only if (1) is a pushout.
If the category is adhesive:
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(c) pushout-pullback decomposition ([24], Lemma 2.6): If (1) + (2) is a
pushout, (1) is a pullback, and if d′ ∈ mono(C) and (c ∈ mono(C)
or e ∈ mono(C)), then (1) and (2) are both pushouts (and thus also
pullbacks).

(d) pullback-pushout decomposition ([27], Lem. B.2): if (1) + (2) is a pull-
back, (2) a pushout, (1) commutes and a ∈ mono(C), then (1) is a pull-
back.

(e) Horizontal FPC (de-)composition (cf. [16], Lem. 2 and Lem. 3, com-
pare [36], Prop. 36):5 If (1) is an FPC (i.e. if (d′, b) is FPC of (a, d)),
then (1) + (2) is an FPC if and only if (2) is an FPC.

(f) Vertical FPC (de-)composition (ibid): if (3) is an FPC (i.e. if (v.w′) is
FPC of (w, z)), then

i. if (4) is an FPC (i.e. if (x, v′) is FPC of (v, y)), then (3) + (4) is an
FPC (i.e. (x, v′ ◦ w′) is FPC of (v ◦ w, z));

ii. if (3) + (4) is an FPC (i.e. if (x, v′ ◦w′) is FPC of (v ◦w, z)), and if
(4) is a pullback, then (4) is an FPC (i.e. (x, v′) is FPC of (v, y)).

(g) Vertical FPC-pullback decomposition (compare [36], Lem. 38): If v ∈
mono(C), if (4) is a pullback and if (3)+(4) is an FPC (i.e. if (x, v′ ◦w′)
is FPC of (v ◦ w, z)), then (3) and (4) are FPCs.

(h) Vertical FPC-pushout decomposition6: If all morphisms of the squares
(3) and (4) except v are in mono(C), if v ◦ w ∈ mono(C), if (3) is a
pushout and if (3)+(4) is an FPC (i.e. if (x, v′◦w′) is FPC of (v◦w, z)),
then (4) is an FPC and v ∈ mono(C).

Proof. Referring to the references above for the proofs of the (well-known) state-
ments (where necessary by specializing the more general case of M-adhesive
categories to the case of adhesive categories via setting M to the class of all
monomorphisms), it remains to prove our novel vertical FPC-pushout decompo-
sition result. To this end, we first invoke pullback-pushout decomposition (Lemma
2(3d)) in order to demonstrate that since (3) + (4) is an FPC and thus also a
pullback, and since (3) is a pushout and since x ∈ mono(C), (4) is a pullback.
By applying vertical FPC-pullback decomposition, we may conclude that (4) is
an FPC. In order to demonstrate that v ∈ mono(C), construct the commutative

5 It is worthwhile emphasizing that in these FPC-related lemmata, the “orientation”
of the diagrams plays an important role. Moreover, the precise identity of the pair of
morphisms that plays the role of the final pullback complement in a given square may
be inferred from the “orientation” specified in the condition part of each statement.

6 We invite the interested readers to compare the precise formulation of the vertical
FPC-pushout decomposition result to its concrete applications in the setting of the
proof of the concurrency theorem, for which it has been specifically developed.
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cube below left:

Z Z ′

Y Y ′

Z Z ′

X X ′

z

w′w

v z

x

y

v′

Z Z ′

Y Y ′

X

w
v◦w (3)

z

w′

v
y

v◦y

(44)

Since the bottom square is the FPC (and thus pullback) (3) + (4), and since the
right square is a pullback via Lemma 2(1c) (because v′ ∈ mono(C)), by pullback
composition the square �(Z ′, Z,X, Y ′) (the right plus the bottom square) is a
pullback. Thus assembling the commutative diagram as shown above right, since
by assumption (3) is a pushout and all arrows except v are monomorphisms,
invoking Theorem 7 permits to prove that also v ∈ mono(C).

Next, let us highlight one of the quintessential properties of adhesive cate-
gories in view of associative rewriting theories:

Theorem 7 (Effective unions; [34], Thm. 5.1). In an adhesive category C,
given a commutative diagram such as in the middle of (1), if all morphisms ex-
cept the morphism x are monomorphisms, if the square marked (A) is a pushout
and if the exterior square is a pullback, then x is also a monomorphism.

The following result provides several important facts on FPCs.

Lemma 3 (cf. [36], Fact 2, and [16], Lemma 2 and Proposition 2). Let
C be adhesive. For an arbitrary morphism f : A → B, (idB , f) is an FPC
of (f, idA) and vice versa. Moreover, every pushout square along monomor-
phisms is also an FPC square. FPCs are unique up to isomorphism and preserve

monomorphisms. The latter property entails that if C
d←− D

b←− A is the FPC of
C

c←− B
a←− A and if a ∈ mono(C), then also d ∈ mono(C) and vice versa (while

c ∈ mono(C) entails that b ∈ mono(C) by stability of monomorphisms under
pullbacks in an adhesive category C).

For concreteness, we quote the following explicit construction of FPCs in the
category Graph of directed multigraphs:

Lemma 4 (FPCs for graphs; [16], Sec. 4.1 and Construction 5). Let
Graph denote the adhesive category of directed multigraphs, with

– obj(Graph): (multi-)graphs, i.e. tuples G = (VG, EG, srcG : EG → VG, trgG :
EG → VG), with VG the set of vertices, EG the set of edges (with VG ∩EG =
∅), srcG the source and trgG the target maps
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– mor(Graph): graph homomorphisms f : G→ H, specified in terms of pairs
of morphisms (fV : VG → VH , fE : EG → EH) such that srcH◦fE = fV ◦srcG
and trgH ◦ fE = fV ◦ trgG.

Let mono(Graph) denote the class of all injective graph morphisms. Then for

every composable pair of monomorphisms K
i
↪−→ I

m
↪−→ X, the FPC exists and

is constructed explicitly as7 K
m|K
↪−−−→ K

⊆
↪−→ X, where

⊆−→ denotes an inclusion
morphism, and where the graph K reads

VK = VX \m[VI \ VK ]

EK = {e ∈ EX \m[EI \ EK ]|srcX(e) ∈ VK ∧ trgX(e) ∈ VK} .
(45)

B Proofs

B.1 Proof of the SqPO concurrency theorem

Proof. Throughout this proof, in each individual constructive step it may be ver-
ified that due to the stability of monomorphisms under pullbacks and pushouts,
due to the various decomposition lemmata provided in the form of Lemma 2,
and on occasion due to Theorem 7 on effective unions in adhesive categories, all
morphisms induced in the “Synthesis” and “Analysis” steps are in fact monomor-
phisms. For better readability, we will not explicitly mention the individual rea-
soning steps on this point except for a few intricate sub-steps, since they may
be recovered in a straightforward manner.

— Synthesis: Consider the setting presented in (46a). Here, we have ob-
tained the candidate match n = (I2←M21 →O1) via pulling back the cospan
(I2→X1←O1). Next, we construct N21 via taking the pushout of n, which in-
duces a unique arrow N21 →X1 that is according to Theorem 7 a monomor-
phism. The diagram in (46b) is obtained by taking the pullbacks of the spans
Ki → X1← N21 (obtaining the objects K ′i, for i = 1, 2). By virtue of pushout-
pullback decomposition (Lemma 2(3c)), the squares �(K ′1,K1, X1, N21) and
�(K1,K

′
1, N21, O1) are pushouts. Invoking vertical FPC-pullback decomposi-

tion (Lemma 2(3g)), the squares �(K ′2, N21, X1,K2) and �(K2, I2, N21,K
′
2) are

FPCs. Next, letting O21 := PO(O2 ← K2 → K ′2) and I21 := PO(O1 ← K1 →
K ′1), we have via vertical FPC-pushout decomposition (Lemma 2(3h)) that the
resulting two squares on the very right (the ones involving I21) are FPCs and
that the arrow I21 →X0 is a monomorphism, while pushout-pushout decompo-
sition (Lemma 2(3b)) entails that the two newly formed squares on the very left
(the ones involving O21) are pushouts.

The final step as depicted in (46c) consists in constructing K21 = PB(K ′2 →
N21 ← K ′1) and K21 = PB(K2 → X1 ← K1), which by universality of pullbacks

7 The quoted Construction 5 of [16] is slightly more general, in that the morphism m
may be permitted to not be a monomorphism; we will however have no application
for such a generalization in our framework.
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induces a unique arrow K21 → K21. By invoking pullback-pullback decomposi-
tion (Lemma 2(3a)), one may demonstrate that the squares �(K21,K21,Ki,K

′
i)

(for i = 1, 2) are pullbacks. Since the square �(K ′1,K1, X1, N21) is a pushout,
via the van Kampen property (cf. Def. 1) the square �(K21,K21,K2,K

′
2) is a

pushout. Since according to Lemma 3 pushouts are also FPCs, it follows via hori-
zontal composition of FPCs (Lemma 2(3e)) that the square�(K21,K21, X1, N21)
is an FPC. Noting that the pushout square �(K ′1,K1, X1, N21) is an FPC
as well, it follows via horizontal decomposition of FPCs (Lemma 2(3e)) that
�(K21,K21,K1,K

′
1) is an FPC. Thus the claim follows by invoking pushout

composition (Lemma 2(3b)) and horizontal FPC composition (Lemma 2(3e)) in
order to obtain the pushout square �(K21,K21, X2, O21) and the FPC square
�(K21,K21, X0, I21).

— Analysis: Given the setting as depicted in (47a), where the top row
has the structure of an SqPO-composition (compare (4)), where the square
�(K21,K

′
1, N21,K

′
2) is a pullback, the left “curvy” bottom square a pushout

and the right “curvy” bottom square an FPC, we may obtain the configura-
tion of (47c) as follows: construct8 K1 via taking the final pullback complement
of K ′1 → I21 → X0 (which implies the existence of an arrow K21 → K1 via
the FPC property). Note in particular that according to Lemma 3, both arrows
constructed via forming the aforementioned FPC are monomorphisms, and thus
by stability of monomorphisms in an adhesive category (compare Definition 1
and Lemma 2(1c)), the arrow K21 → K1 is a monomorphism as well. Next,
take the pushout X1 = PO(K1 ← K ′1 → N21), followed by constructing K2 as
the final pullback complement of K ′2 → N21 → X1 (which implies due to the
FPC property of the resulting square �(K ′2,K2, X1, N21) the existence of an
arrow K21 → K2). Invoking pullback-pullback decomposition (Lemma 2(3a))
twice, followed by the van Kampen property (Def. 1), we may conclude that the
square �(K21,K21,K2,K

′
2) is a pushout. Thus invoking pushout-pushout de-

composition (Lemma 2(3b)), we find that also �(K ′2,K2, X2, O21) is a pushout.
We finally arrive at the configuration in (47d) via composition of pushout and
FPC squares, respectively, thus concluding the proof.

B.2 Proof of the SqPO associativity theorem

Our proof strategy will be closely related to the one presented in [7] (with full
technical details provided in [8]) for the analogous associativity theorem in the
DPO-rewriting case. However, the SqPO-type case poses considerable additional
challenges, since this rewriting semantics yields diagrams of a rather heteroge-
neous nature (including pullbacks, pushouts, pushout complements and FPCs)
as compared to the DPO case, and in addition unlike DPO-type rule composi-
tions, SqPO-type compositions are not reversible in general, which necessitates
an independent proof of both directions of the bijective correspondence.

8 Note that it is precisely in this step and the following step that we require the
existence of FPCs for arbitrary pairs of monomorphisms as per Assumption 1.
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O2 K2 I2 M21 O1 K1 I1

N21

X2 K2 X1 K1 X0

(46a)

O2 K2 I2 M21 O1 K1 I1

O21 K ′2 N21 K ′1 I21

X2 K2 X1 K1 X0

(46b)

O2 K2 I2 M21 O1 K1 I1

O21 K ′2 N21 K ′1 I21

X2 K2 X1 K1 X0

K21

K21

(46c)

Fig. 2. Synthesis part of the concurrency theorem.

Proof. We first prove the claim in the “⇒” direction, i.e. starting from the set
of data

m21 = (O2←M21 →I1) ∈Msq
p2(p1)

m3(21) = (O3←M3(21) →I21) ∈Msq
p3(p21) , p21 = p2

m21^ p1 ,
(48)
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we have to demonstrate that one may uniquely (up to isomorphisms) construct
from this information a pair of admissible matches

m32 = (O3←M32 →I2) ∈Msq
p3(p2)

m(32)1 = (O32←M(32)1 →I1) ∈Msq
p32(p1) , p32 = p3

m32^ p2 ,
(49)

and such that the property described in (6) holds. We begin by forming the

SqPO-composite rule p3(21) = p3
m3(21)

^ p21, which results in the diagram

O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′2 N21 K ′1 I21

O321 K3
N3(21) K2

N(32)1 K1 I321

(50)

by virtue of invoking SqPO-composition twice. For the remainder of the proof,
it is very important to precisely determine the nature of each of the squares in
this diagram:

– To clarify the structure of the the rightmost four squares at the bottom,
consider the setting presented in (47a): since in the definition of the SqPO-
composition as presented in (5) the nature of the squares to the right is
that of pushout complement and pushout, respectively, it may be verified
that applying the analysis procedure to the diagram in (47a) with thus the
“curvy” front and right bottom faces both pushouts, one eventually arrives
(by virtue of pushout-pushout and pushout-pullback decomposition) at the
setting depicted in (47c) with all squares in the bottom row being pushouts.
Thus the rightmost four squares at the bottom of (50) are all pushouts.

– By virtue of the definition of SqPO-composition, all vertical squares in the
back of (47c) are pushouts, except for the square �(K2,K

′
2, N21, I2), which

is an FPC. Analogously, the bottom leftmost three squares are (in order
from left to right) a pushout, an FPC and a pushout.

Constructing the pullback M32 = PB(M3(21) →O21 ← O2) (which by uni-
versality of pullbacks also leads to an arrow M32 →I3) and forming the three
additional vertical squares on the far left in the evident fashion in the diagram
below

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′2 N21 K ′1 I21

O321 K3
N3(21) K2

N(32)1 K1 I321

(51)
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allows us to construct N32 = PO(I3←M32 →O2), which in turn via universality
of pushouts uniquely induces an arrow N32 → N3(21):

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′2 N21 K ′1 I21

O32 K ′3 N32 K ′′2 I32 O1 K1 I1

O321 K3
N3(21) K2

N(32)1 K1 I321

(52)

Here, the rightmost three squares on the top are formed in the evident fashion
(and are pushouts by universal category theory), while the other arrows of the
above diagram are constructed as follows:

K ′3 = PB(K3 → N3(21) ← N32) , O32 = PO(K ′3 ← K3 → O3)

K ′′2 = PB(N32 → N3(21) ←K2) , I32 = PO(K ′′2 ← K2 → I2)
(53)

Invoking pushout-pullback, pushout-pushout and vertical FPC-pullback decom-
positions, it may be verified that (describing positions of front and top square
pairs by the position of the respective front square, from left to right)

– the leftmost front and top squares are pushouts,
– the second from the left front and top squares are FPCs,
– the third from the left front and top squares are pushouts,
– in the next adjacent pair, the front square is an FPC and the top square a

pushout,
– the second from the right front and top squares are pushouts, and
– the rightmost front and top squares are pushouts.

Defining the pullback object M(32)1 = PB(I32→ N3(21) ←O1), thus inducing
an arrow M21 →M3(21),

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′2 N21 K ′1 I21

O32 K ′3 N32 K ′′2 I32 M(32)1 O1 K1 I1

O321 K3
N3(21) K2

N(32)1 K1 I321

(54)

it remains to verify that the square �(M3(21), I32, N3(21), O1) is not only a pull-
back, but also a pushout square. This part of the proof requires a somewhat
intricate diagram chase; since the required arguments are identical9 to the “⇒”
part of proof of DPO-type associativity as presented in [8], we omit this part of

9 More precisely, the only difference in the structure of the relevant sub-diagram com-
pared to the DPO case resides in the two FPC squares in the front and back in
fourth position from the left (which happen to be pushout squares in the corre-
sponding DPO-type proof), but the structure of this part of the diagram is not
explicitly used in the proof in the DPO variant of the theorem, whence the claim
follows.
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the proof here in the interest of brevity.

It thus remains to prove the claim in the “⇐” direction, i.e. starting from
the set of data

m32 = (O3←M32 →I2) ∈Msq
p3(p2)

m(32)1 = (O32←M(32)1 →I1) ∈Msq
p32(p1) , p32 = p3

m32^ p2 ,
(55)

we need to demonstrate that one may uniquely (up to isomorphisms) construct
from this information a pair of admissible matches

m21 = (O2←M21 →I1) ∈Msq
p2(p1)

m3(21) = (O3←M3(21) →I21) ∈Msq
p3(p21) , p21 = p2

m21^ p1 ,
(56)

and such that the property described in (6) holds. We begin by forming the

SqPO-composite rule p(32)1 = p32
m(32)1

^ p1, which results in the diagram

O3 K3 I3 M32 O2 K2 I2

O32 K ′3 N32 K ′′2 I32 M(32)1 O1 K1 I1

O321 K3
N3(21) K2

N(32)1 K1 I321

(57)

by virtue of invoking SqPO-composition twice. A careful inspection of the defini-
tion of the SqPO-composition and of the analysis part of the SqPO concurrency
theorem permit to verify that the nature of all squares thus constructed coin-
cides precisely with the nature of the corresponding squares in the “⇒” part of
the proof.

Constructing the pullback M21 = PB(I2 → I32 ← M(32)1) (which by the
universal property of pullbacks also leads to an arrow M21 →O1) and forming
the three additional vertical squares on the far right in the evident fashion in
the diagram below

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

N21

O32 K ′3 N32 K ′′2 I32 M(32)1 O1 K1 I1

O321 K3
N3(21) K2

N(32)1 K1 I321

(58)

allows us to construct N21 = PO(I2←M21 →O1), which in turn via the universal
property of of pushouts induces an arrow N21 → N(32)1:

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 O21 K ′2 N21 K ′1 I21

O32 K ′3 N32 K ′′2 I32 M(32)1 O1 K1 I1

O321 K3
N3(21) K2

N(32)1 K1 I321

(59)

92



The remaining new squares of the above diagram are constructed as follows:

K ′2 = PB(K2 → N(32)1 ← N21) O211 = PO(O2 ← K2 → K ′2) . (60)

Moreover, by virtue of vertical FPC composition, the square�(K3,K3, N3(21), I3)

is an FPC, while via pushout composition the square �(K ′3,K3, O321, O3) is a
pushout.

Again, the nature of all squares constructed thus far coincides precisely with
the structure as presented in the “⇒” part of the proof, with one notable excep-
tion: by virtue of vertical FPC-pullback decomposition, we may only conclude
that the square �(K ′2,K2, N(32)1, N21) is an FPC (but at this point we do not
know whether it is also a pushout as in the analogous part of the diagram in
the “⇒” part of the proof). However, an auxiliary calculation demonstrates that
this square is in fact a pushout in disguise — consider the following “splitting”
of the relevant sub-part of the diagram as shown below:

K2 I2 M21

K ′2 I32 M3(21)

K2
N(32)1 O1

K ′′2 N21 O1

 

K2 I2 M21

K ′2 I32 M3(21)

K ′2 I32 M3(21)

K2 N ′21 O′1

K2
N(32)1 O1

K ′′2 N21 O1

(61)

The precise steps are as follows: the front left square in the diagram above
left is an FPC; thus if one takes the pushout N21′ = PO(K2 ← K ′2 → N21)
as well as in the bottom back the pushout along the isomorphism of K ′2 as
displayed (yielding the arrows in the middle), followed by taking the pullback
O′1 = PB(N ′21, N(32)1, O1) (which entails that the arrow M3(21) → O′1 exists), it
is straightforward to verify that O′1 ∼= O1. Invoking the van Kampen property
(recalling that by definition the right square on the bottom is a pushout), we find
that �(M3(21), O

′
1, N

′
21, I32) is a pushout. Thus by pushout-pushout decomposi-

tion, the square �(O′1, O1, N(32)1, N
′
21) is a pushout, whence N ′21 ∼= N21. This in

summary entails10 that the square �(K ′2,K2, N(32)1, N21) is not only an FPC,
but in fact also a pushout.

10 Coincidentally, at this point we are back into full structural analogy to the “⇒” part
of the proof, a necessary prerequisite for completing this part of the proof as it will
turn out.
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Back to the main proof, defining the pullback object

M3(21) = PB(I3→ N(32)1 ←O21) ,

thus inducing an arrow M32 →M(32)1,

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′2 N21 K ′1 I21

O32 K ′3 N32 K ′′2 I32 M(32)1 O1 K1 I1

O321 K3
N3(21) K2

N(32)1 K1 I321

(62)

it remains to verify that the square �(M(32)1, O21, N(32)1, I3) is not only a pull-
back, but also a pushout square. Let us construct the auxiliary diagram as de-
picted in Figure 4, with objects obtained via taking suitable pullbacks as indi-
cated. The four cubes that are drawn separately are the top, back, bottom and
front cubes induced via the newly constructed arrows, and are oriented such that
one may easily apply the van Kampen property in the next step of the proof
(which in most cases requires a suitable 3d-rotation).

Invoking pullback-pullback decomposition and the van Kampen property re-
peatedly, it may be verified that in the relevant sub-diagram as presented below

M32 O2 K2 A M21

M3(21) O21 K ′2 B O1

I3 N3(21) K2 D O1

I3 N32 K ′′2 C M(32)1

(63)

we find the following structure of the squares:

– All squares on the top are pushouts, except the second one from the right
(which is a pullback).

– The second and third square from the left in the back of the diagram are
pushouts, the other two back squares are pullbacks, with the same structure
for the front squares.

– Counting from left to right, the second and fourth square on the bottom are
pushouts, the other two are pullbacks.
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O2 K2 I2 M21 O1 K1 I1

O21 K ′2 N21 K ′1 I21

X2 X0

K21

K21

(47a)

O2 K2 I2 M21 O1 K1 I1

O21 K ′2 N21 K ′1 I21

X2 K1 X0

K21

K21

(47b)

O2 K2 I2 M21 O1 K1 I1

O21 K ′2 N21 K ′1 I21

X2 K2 X1 K1 X0

K21

K21

(47c)

O2 K2 I2 M21 O1 K1 I1

O21 K ′2 N21 K ′1 I21

X2 K2 X1X1 K1 X0

K21

K21

(47d)

Fig. 3. Analysis part of the concurrency theorem.
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B

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′2 N21 K ′1 I21

O32 K ′3 N32 K ′′2 I32 M(32)1 O1 K1 I1

O321 K3
N3(21) K2

N(32)1 K1 I321

A

A M21

C N3(21)

K2 I2

K ′′2 I32

B A

K ′2 K2

O1 M21

N21 I2

O1 B

O1 D

N21 K ′2

N(32)1 K2

K ′′2 C

K2 D

I32 M(32)1

N(32)1 O1

A = PB(K2 → I2 ←M21)

B = PB(K ′2 → N21 ← O1)

C = PB(K ′′2 → I32 ←M(32)1)

D = PB(K2 → N(32)1← O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2 → I2 ←M21)

B = PB(K ′2 → N21 ← O1)

C = PB(K ′′2 → I32 ←M(32)1)

D = PB(K2 → N(32)1← O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2 → I2 ←M21)

B = PB(K ′2 → N21 ← O1)

C = PB(K ′′2 → I32 ←M(32)1)

D = PB(K2 → N(32)1← O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2 → I2 ←M21)

B = PB(K ′2 → N21 ← O1)

C = PB(K ′′2 → I32 ←M(32)1)

D = PB(K2 → N(32)1← O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2 → I2 ←M21)

B = PB(K ′2 → N21 ← O1)

C = PB(K ′′2 → I32 ←M(32)1)

D = PB(K2 → N(32)1← O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2 → I2 ←M21)

B = PB(K ′2 → N21 ← O1)

C = PB(K ′′2 → I32 ←M(32)1)

D = PB(K2 → N(32)1← O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2 → I2 ←M21)

B = PB(K ′2 → N21 ← O1)

C = PB(K ′′2 → I32 ←M(32)1)

D = PB(K2 → N(32)1← O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2 → I2 ←M21)

B = PB(K ′2 → N21 ← O1)

C = PB(K ′′2 → I32 ←M(32)1)

D = PB(K2 → N(32)1← O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2 → I2 ←M21)

B = PB(K ′2 → N21 ← O1)

C = PB(K ′′2 → I32 ←M(32)1)

D = PB(K2 → N(32)1← O1)
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Fig. 4. Auxiliary diagram for the second part of the SqPO associativity proof.
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In particular, as indicated this entails that D ∼= B. We proceed by performing
the following “splitting” of the diagram:

M32 O2 K2 A M21

M3(21) O′
2 K ′′′

2 B′ O′
1

M3(21) O21 K ′
2 B O1

I3 N ′
32 K2

′
D′ O′′

1

I3 N3(21) K2 D O1

I3 N32 K ′′
2 C M(32)1

(64)

Start the “splitting” via taking the pushouts N ′32 = PO(I3 ← I3 → N32) (which
entails that N ′32 ∼= N32) and O′2 = PO(M3(21) ← M32 → O2). By pullback-
pullback decomposition followed by pushout-pullback decomposition, we may
conclude that the resulting square �(O′2, N

′
32, I3,M3(21)) is a pushout. Note also

that all vertical squares in the bottom left part of the diagram thus constructed
are pullbacks (by virtue of suitable pullback decompositions).

Next, construct the pullbacks K
′
2 = PB(N ′21 → N3(21) ← K2) and K ′′′2 =

PB(O′2 → O21 ← K ′2). By pushout-pullback decomposition, in the diagram on
the right the top and bottom front squares and back squares in the second column

are pushouts, while the square �(K ′′′2 ,K
′
2,K2,K

′
2) is a pullback. Performing

the precise same steps in the next column, i.e. via taking the pullbacks D′ =

PB(K
′
2 → K2 ← D) and B′ = PB(K ′′′2 → K ′2 ← B), we obtain via pushout-

pullback decomposition that the top and bottom front and top and bottom back
squares in the third column are pushouts, while the square �(B′, B,D,D′) is a
pullback. But since D ∼= B and since by universal category theory isomorphisms
are stable under pullback, we conclude that D′ ∼= B′, and thus that the square
�(B′, B,D,D′) is in fact a pushout.

By pushout composition, we may thus conclude that �(K ′′′2 ,K
′
2,K2,K

′
2) is a

pushout, whence �(O′2, O21, N3(21), N
′
32) is a pushout, which finally allows us to

conclude that �(M3(21), O21, N3(21), I3) is a pushout. This concludes the proof
of the SqPO-type associativity theorem.

B.3 Proof of the theorem on SqPO rule algebra properties

Proof. Associativity of �RC
follows from the associativity of the operation .

.^ .
proved in Theorem 3. The claim that R∅ = δ(∅← ∅→ ∅) is the unit element
of the rule algebra RsqC follows directly from the definition of the rule algebra

97



product for R∅�RC
R and R�RC

R∅ for R ∈ RsqC . More concretely, we present
below the category-theoretic composition calculation that underlies the equation
R∅ �RC

R = R:

∅ ∅ ∅ ∅ O K I

O O O K I

PO FPC PO POC

o i

PO

o i

(65)

Here, it is important to note that the pushout complement used to construct the
square marked POC always exists (see Lemma 2(1a)), whence the claim follows.

B.4 Proof of the SqPO canonical representation theorem

Proof. In order for ρsqC to qualify as an algebra homomorphism (of unital asso-

ciative algebras RsqC and End(Ĉ)), we must have (with R∅ = δ(p∅), p∅ = (∅←
∅→ ∅))

(i) ρsqC (R∅) = 1End(Ĉ)

(ii) ∀R1, R2 ∈ RsqC : ρsqC (R1 �RC
R2) = ρsqC (R1)ρSqC (R1) .

Due to linearity, it suffices to prove the two properties on basis elements δ(p), δ(q)

of RsqC (for p, q ∈ Lin(C)) and on basis elements |X〉 of Ĉ. Property (i) follows
directly from the definition,

∀X ∈ obj(C)∼= : ρsqC (R∅) |X〉 (16)=
∑

m∈Msqr∅ (X)

|(r∅)m(X)〉 = |X〉 .

Property (ii) follows from Theorem 2 (the SqPO-type concurrency theorem): for
all basis elements δ(p), δ(q) ∈ RsqC (with p, q ∈ Lin(C)) and for all X ∈ obj(C),

ρsqC (δ(q)�C δ(p)) |X〉 (11)=
∑

d∈Msq
q (p)

ρsqC

(
δ

(
q

d^ p
))
|X〉

(16)
=

∑

d∈Msq
q (p)

∑

e∈Msqrd (X)

|(rd)e(X)〉 (rd = q
d^ p)

=
∑

m∈Msqp (X)

∑

n∈Msqq (pm(X))

|qn(pm(X))〉 (via Thm. 2)

(16)
=

∑

m∈Msq
p (X)

ρsqC (δ(q)) |pm(X)〉

(16)
= ρsqC (δ(q)) ρsqC (δ(p)) |X〉 .

98



B.5 Proof of the SqPO stochastic mechanics framework theorem

Proof. By definition, the SqPO-type canonical representation of a generic rule

algebra element (O
p⇐ I) ∈ RC is a row-finite linear operator, since by virtue of

the finitarity of objects according to Assumption 2, for every object X ∈ obj(C)
the set of SqPO-admissible matches Msq

p (X) of the associated linear rule p =

(O
o←− K i−→ I) is finite. We may thus verify that the linear operator H possesses

all the required properties of a so-called Q-matrix (or infinitesimal generator) of
a CTMC [41,1], i.e. its non-diagonal entries are non-negative, its diagonal entries
are finite, and furthermore the row sums of H are zero (whence H constitutes
a conservative and stable Q-matrix; compare (21) of Definition 9). It is crucial
to note that while originally H as a linear combination of representations of
rule algebra elements is only defined to act on finite linear combinations of
basis vectors |X〉 of Ĉ, an important mathematical result from the theory of
CTMCs entails that if a row-finite linear operator such as H is a stable and
conservative Q-matrix, it extends to a linear operator on infinitely supported
distributions (here over basis vectors of Ĉ) with finite real coefficients (see e.g.
[1], Chapters 1 and 2). Moreover, the property 〈|H = 0 follows directly from the
defining equations (21) of Definition 9.

Let us prove next the claim on the precise structure of observables. Recall
that according to Definition 10, an observable O ∈ OC must be a linear operator
in End(SC) that acts diagonally on basis states |X〉 (for X ∈ obj(()C)∼=), whence
that satisfies for all X ∈ obj(C)∼=

O |X〉 = ωO(X) |X〉 (ωO(X) ∈ R) .

Comparing this equation to the definition of the SqPO-type canonical repre-
sentation (Definition 8) of a generic rule algebra basis element δ(p) ∈ RsqC (for

p ≡ (O
o←− K i−→ I) ∈ Lin(C)),

ρsqC (δ(p)) |X〉 :=

{∑
m∈Msqp (X) |pm(X)〉 if Msq

p (X) 6= ∅
0Ĉ else,

we find that in order for ρsqC (δ(p)) to be diagonal we must have

∀X ∈ obj(C) : ∀m ∈ Msq
p (X) : pm(X) ∼= X .

But by definition of SqPO-type derivations of objects along admissible matches
(Definition 4), the only linear rules p ∈ Lin(C) that have this special property
are precisely the rules of the form

pidM = (M
idM←−−M idM−−→M) .

In particular, defining OsqM := ρsqC (δ(pidM )), we find that the eigenvalue ωOsqM (X)
coincides with the cardinality of the set Msq

pidM
(X) of SqPO-admissible matches,

∀X ∈ ob(C) : OsqM |X〉 = |Msq
pidM

(X)| · |X〉 .
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This proves that the operators OsqM form a basis of diagonal operators on End(Ĉ)
(and thus on End(SC)) that can arise as linear combinations of representations
of rule algebra elements.

To prove the jump-closure property, note that it follows from Definition 4

that for an arbitrary linear rule p ≡ (O
o←− K

i−→ I) ∈ Lin(C), a generic object
X ∈ obj(C) and a monomorphism m : I → X, m is according to Definition 4
both a match of the rule p as well as of the rule pidI . Evidently, the application
of the rule p to X along the match m produces an object pm(X) that is in
general different from the object pidIm (X) produced by application of the rule
pidI to X along the match m. But by definition of the projection operator 〈|
(Definition 10),

∀X ∈ obj(C)∼= : 〈 |X〉 := 1R ,

we find that
〈 | pm(X)〉 =

〈
| pidIm (X)

〉
= 1 ,

whence we may prove the claim of the SqPO-type jump-closure property via
verifying it on arbitrary basis elements (with notations as above):

〈| ρsqC (δ(p)) |X〉 = |Msq
p (X)| = |Msq

pidI
(X)| = 〈| ρsqC (δ(pidI )) |X〉 .

Since X ∈ obj(C)∼= was chosen arbitrarily, we thus have indeed that

〈| ρsqC (δ(p)) = 〈| ρsqC (δ(pidI )) .

This concludes the proof that our definition of continuous-time Markov chains
based upon SqPO-type rewriting rules is well-posed and yields all the requisite
properties.
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over Typed Attributed Graphs
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Hasso Plattner Institut, University of Potsdam, Germany

Discrete event dynamic systems generate possibly infinite state sequences. We
consider systems generating timed graph sequences where a non-constant amount
of time in R elapses between two successive states and where these states are
given by graphs. Metric temporal logics can then be employed to characterize
the subset of all well-behaving dynamic timed systems specifying all timed graph
sequences that are admissible.

For this graph-based setting, we rely on the logic of nested graph condi-
tions [5] to specify a single graph occurring in a state sequence. We define nested
graph conditions over symbolic graphs, which represent node/edge attributions
by containing (a) node/edge attributes and variables as elements, (b) mappings
for each of these attributes to a node/edge and to a variable, and (c) constraints
over the set of variables contained in the graph. The following example shows
that the usage of attribute constraints is necessary for specifying symbolic graphs
when attribute values may range over an infinite set of values.

Example 1 (Nested Graph Condition over Symbolic Graphs). Let φ be the nested
graph condition that states the existence of a node of type :A with an attribute
value = x and an attribute constraint x ≥ 3. Let G be the graph that contains a
node of type :A with an attribute value = y and an attribute constraint y = 5.
The satisfaction of φ by G is then proven using the monomorphism m that maps
the variable x to the variable y for which the implication y = 5 −→ m(x ≥ 3)
is a tautology as can be decided by SMT solvers when the attribute constraints
range over booleans, integers, reals, and strings with their usual operations.

Nested graph conditions can describe invariants [3]. Metric temporal logics such
as MTL [6] support further operators such as the until operator to describe
causal dependencies of occcurrences of graphs also incorporating an interval over
R0 to describe when graphs must occur in a timed graph sequence. However,
properties such as “every task that is started is completed within 10 timeunits”
can not be expressed in MTL when there is no upper bound on the number
of tasks. In this property, tasks have individual deadlines and task completion
events must refer to the corresponding task creation events to prevent confusion
of these deadlines. Consequently, an unbounded number of tasks can then not
be expressed using a finite MTL formula.

In our paper [4], we extend the logic of nested graph conditions from above,
which supports a suitable binding mechanism via quantification, with the metric
temporal operator until resulting in the Metric Temporal Graph Logic (MTGL).
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With this logic, we express properties on the structure and attributes of states
as well as on the occurrence of states over time that are related by their inner
structure, which no formal logic over graphs concisely accomplishes so far. For
example, we can express properties such as “every started task is completed
within 10 timeunits” using MTGL even when the number of concurrent tasks
is unbounded.

We provide fully-automatic support for MTGL in the form of the tool Au-
toGraph in which we have implemented the following procedure for deciding
whether a timed graph sequence satisfies a given MTGL condition. Checking
satisfaction directly for timed graph sequences and MTGL conditions is difficult
when the MTGL condition contains nested occcurrences of the until operator.
We therefore developed an approach allowing us to reduce the MTGL satis-
faction problem to the satisfaction problem for nested graph conditions that is
well-supported in AutoGraph. For this purpose, we (a) merge all information
contained in a timed graph sequence π into a single graph with history G where
creation and deletion times of graph elements are represented by additional at-
tributes and (b) convert the MTGL condition φ into a nested graph condition
φ′ replacing recursively MTGL operators by nested graph conditions that en-
code the semantics of these operators. This conversion procedure uses attribute
constraints to express the metric aspects related to intervals used in the un-
til operator as well as references to the creation and deletion time attributes.
As a consequence, we then equivalently check using AutoGraph whether the
obtained graph G satisfies the nested graph condition φ′ instead of checking
whether the timed graph sequence π satisfies the MTGL condition φ.

The proposed MTGL logic can be used (a) to specify timed graph sequences
as generated by timed graph transformation systems [2] and (b) in the field
of runtime monitoring where violations of temporal properties are to be de-
tected in timed sequences of states. Another logic used for runtime monitoring is
MFOTL [1], which assumes that states are given by sets of relations. Compared
to MFOTL, MTGL has distinct benefits such as its continuous semantics that
also reveals missing events and the direct support of binding of graph elements
as a natural extension of nested graph conditions.
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The logic of nested graph conditions (called conditions) [4] is applicable in various
application scenarios in which its conditions are used to specify sets of graphs.

We define conditions over typed symbolic graphs, which represent node/edge
attributions by containing (a) node/edge attributes and variables as elements,
(b) mappings for each of these attributes to a node/edge and to a variable, and
(c) constraints over the set of variables contained in the graph. The following
example shows that the usage of attribute constraints is necessary for specifying
symbolic graphs when attribute values may range over an infinite set of values.

Example 1 (Condition over Symbolic Graphs). If the condition φ states that an
attribute value = x must satisfy x ≥ 3, then φ is satisfied by a graph G where an
attribute value = y is restricted to y = 5. This satisfaction is proven using the
monomorphism m that maps x to y for which y = 5 −→ m(x ≥ 3) is a tautology
as can be decided by SMT solvers. The satisfaction problem is decidable for
conditions when the satisfiability problem is decidable for the underlying data
algebra, which is the case when the attribute constraints range over booleans,
integers, reals, and strings with their usual operations.

The satisfiability problem is semi-decidable but undecidable for conditions as
they are equally expressive to first-order logic on graphs as introduced in [2].
The procedure SeekSat [6] terminates and gives the correct answer true, for
every satisfiable condition φ. The sound resolution-based procedure ProCon [6]
targeted tautological conditions and was adapted in [5] into a tableau-based
procedure that also terminates when the condition φ is not satisfiable, which
means that the latter procedure is refutationally complete.

The model generation problem requires the generation of satisfying instances.
The procedure SeekSat from above also returns such a graph upon termination.
In translation-based approaches, conditions (for example from OCL) are trans-
lated to SAT or SMT solvers such as Kodkod and Alloy [3,1], which are then
used for model generation. In approaches based on model rewriting, models are
generated by modification steps from initially given representations as in [11].

In our paper [9], we extend [5,8] (by adding support for attributes and
disambiguation as explained below) to an automatic reasoning procedure A for
conditions implemented in the tool AutoGraph. Provided termination of the
procedure A for a given condition φ, we obtain an equivalent rewriting in the
form of a finite disjunction of a set S of conditions ψi = ∃(Gi, ψ

′
i) where every Gi

is a minimal graph satisfying the provided condition φ. We call the conditions ψi

symbolic models as each ψ′i describes how the symbolic graph Gi can be extended

103



to further satisfying graphs. Moreover, A has the following properties supporting
an extended form of model generation.
– S jointly covers all graphs G satisfying the condition φ (completeness of S),
– S does not cover any graph G violating the condition φ (soundness of S),
– S has no strict complete subset (compactness of S),
– S allows for each of its symbolic models the immediate extraction of a finite

minimal graph G that satisfies the condition φ (minimal representable S),
– S allows for an enumeration of further finite graphs G satisfying the condi-

tion φ (explorable S).
WhileA does not terminate in general, it is refutationally complete and gradually
generates S, which can be exploited in cases where A does not terminate, does
not terminate in a given duration, or where only a certain number of minimal
models are to be obtained. Finally, we developed additional operations adapt-
ing S such that the resulting symbolic models describe disjoint sets of graphs
enforcing a notion of nonambiguity among symbolic models.

Besides the refutationally complete check for satisfiability, the rewriting em-
ployed in A can be understood to result in a more explicit representation that
may ease subsequent operations due to its restricted syntactical form and that
may be more comprehensible supporting the validation of the original condi-
tion φ. Moreover, the procedure A has been applied recently in a graph repair
approach in [10] where repairs are generated from the minimal models gener-
ated here. The generation of complete sets of minimal models is a distinguishing
feature when comparing to the previoulsy mentioned related approaches.
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Logic-based methods have come a long way over recent years. Improvements
in the usability and scalability of tools have led to significant advances in the
automation of hard computational problems in software engineering. Automated,
formal verification, design space exploration, among others, requiring scalable
solutions to constraint satisfaction or optimisation problems.

The analysis of graph transformation systems involves a variety of hard com-
putational problems, including dynamic techniques such as execution, simulation
or unfolding of systems, the membership problem for graph grammars, reach-
ability and model checking problems, as well as static techniques such as the
analyses of critical pairs, the verification and enforcement of graph constraints
as invariants and the verification of systems based on a calculus of weakest pre-
conditions. Many of these problems also arise in other contexts where state- and
rule-based models or programs are analysed. One might expect that solutions
adopted in software engineering more widely are also applicable to graph trans-
formation systems, despite the fact that they are nor particularly designed for
our domain. This suggests a translation-based approach where (typically logic-
based) specifications are extracted and analysed in their own domain.

On the other hand, solutions to our analysis problems are often based on
theoretical results that take into account the specific features of graph transfor-
mations, such as their inherent non-determinism and concurrency, the complex
non-linear structure of graphs, the properties of particular approaches and for-
malisations, and restrictions including context freeness or monotonicity. As a
consequence, the majority of existing solutions are native ones, providing be-
spoke analysis tools for graph transformation systems and grammars.

The aim of this session is two-fold, to discuss the pros and cons of native
vs translation-based approaches to the analysis of graph transformation systems
and, for the latter, understand some of the design choices such as selecting the
right logics and tools, choosing an appropriate encoding, etc.

We start the session with an overview of a range of analysis problems and
solutions to establish the state of the art of this area as well as its open problems.

Then we review and compare native vs. translation-based solutions to anal-
ysis problems from the literature and discuss reported experiments aimed at
evaluating these solutions. We will consider, in particular, the literature on the
use of SAT and SMT solvers, which have seen some of the most impressive recent
advances in technology, for solving analysis problems of graph transformations.
We conclude with short contributions from the audience and a general panel
discussion.
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